Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/jarlg/Yoneda-Ext
20 March 2024, 19:25:33 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/dev
    • refs/heads/main
    No releases to show
  • 0316bec
  • /
  • EquivalenceRelation.v
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:58db741ea19c55a3914e637fe585664e7346852c
origin badgedirectory badge Iframe embedding
swh:1:dir:0316becdb6490aaf3f90d4626351c5e52016464e
origin badgerevision badge
swh:1:rev:0239ae5607dd869ef6ad18aa41b2a27ed5e0ed5d
origin badgesnapshot badge
swh:1:snp:a490b6035923e1853b7217a1b8e3e2fd9c195a6e

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 0239ae5607dd869ef6ad18aa41b2a27ed5e0ed5d authored by Jarl G. Taxerås Flaten on 10 August 2023, 11:37:38 UTC
add doi to README.md
Tip revision: 0239ae5
EquivalenceRelation.v
From HoTT Require Import Basics Types Truncations.

(** The "fiber" of a map with respect to a relation. *)
Definition rfiber {X Y : Type} (R : Relation Y) (f : X -> Y) (y : Y) : Type
  := exists x, R (f x) y.

Definition lfiber {X Y : Type} (R : Relation Y) (f : X -> Y) (y : Y) : Type
  := exists x, R y (f x).

(** * The equivalence relation generated by a relation. *)

(** We model the equivalence relation generated by a relation using alternating zig-zags, and by throwing in reflexivity relations. It's easy to show that the resulting relation is an equivalence relation. *)

(** The 'zig' goes forward, and the 'zag' goes backward *)
Fixpoint zig_or_zag {X : Type} (R : Relation X) (n : nat) (x0 x1 : X) : Type
  := match n with
     | 0%nat => x0 = x1
     | S n => exists x, zig_or_zag R n x0 x * (R x x1 + R x1 x)
     end.

(** The equivalence relation generated by a relation [R]. *) 
Definition EqRel {X : Type} (R : Relation X) (x0 x1 : X) : Type
  := exists n, zig_or_zag R n x0 x1.

(** We can add ("cons") a zig or a zag at the end of a chain of such. *)

Definition zig_cons {X : Type} (R : Relation X) {x0 x1 x2 : X}
  (rho : EqRel R x0 x1) (zig : R x1 x2)
  : EqRel R x0 x2
  := (S rho.1; (x1; (rho.2, inl zig))).
                       
Definition zag_cons {X : Type} (R : Relation X) {x0 x1 x2 : X}
  (rho : EqRel R x0 x1) (zag : R x2 x1)
  : EqRel R x0 x2
  := (S rho.1; (x1; (rho.2, inr zag))).

Global Instance reflexive_eqrel {X : Type} (R : Relation X)
  : Reflexive (EqRel R) := fun _ => (0%nat; idpath).

Definition zig_to_eqrel {X : Type} (R : Relation X)
  {x0 x1 : X} (zig : R x0 x1) : EqRel R x0 x1
  := zig_cons R (reflexivity _) zig.

Definition zag_to_eqrel {X : Type} (R : Relation X)
  {x0 x1 : X} (zag : R x1 x0) : EqRel R x0 x1
  := zag_cons R (reflexivity _) zag.

(** ** [EqRel R] is an equivalence relation. We saw reflexivity above. *)

Global Instance transitive_eqrel {X : Type} (R : Relation X)
  : Transitive (EqRel R).
Proof.
  intros x0 x1 x2 rho01 [m zzs].
  revert x1 x2 rho01 zzs.
  induction m as [|m IH]; intros.
  - by induction zzs.
  - destruct zzs as [x [zzs [zig|zag]]].
    + exact (zig_cons R (IH _ _ rho01 zzs) zig).
    + exact (zag_cons R (IH _ _ rho01 zzs) zag).
Defined.

Global Instance symmetric_eqrel {X : Type} (R : Relation X)
  : Symmetric (EqRel R).
Proof.
  intros x0 x1 [n zzs]; revert x0 x1 zzs.
  induction n as [|n IH].
  - intros ? ? p; exact (0%nat; p^).
  - intros ? ? [x [zzs zorz]].
    transitivity x.
    2: by apply IH.
    destruct zorz as [zig|zag].
    + exact (zag_to_eqrel R zig).
    + exact (zig_to_eqrel R zag).
Defined.

(** To check whether a map respects [EqRel R], we just need to check that it respects [R]. *)
Definition eqrel_generator {X Y : Type}
  (R : Relation X) (Q : Relation Y) (f : X -> Y)
  : (forall x0 x1, R x0 x1 -> Q (f x0) (f x1))
    -> (forall x0 x1, EqRel R x0 x1 -> EqRel Q (f x0) (f x1)).
Proof.
  intros f_resp x0 x1 [n zz].
  (* we need a free endpoint before inducting on [n] *)
  revert dependent x1.
  induction n as [|n IH].
  1: intros; by induction zz.
  intros x1 [x [zz [zig|zag]]].
  - exact (zig_cons _ (IH _ zz) (f_resp _ _ zig)).
  - exact (zag_cons _ (IH _ zz) (f_resp _ _ zag)).
Defined.

Definition MEqRel {X : Type} (R : Relation X) (x0 x1 : X) : Type
  := merely (EqRel R x0 x1).

Definition zig_to_meqrel {X : Type} (R : Relation X)
  : forall x0 x1, R x0 x1 -> MEqRel R x0 x1
  := fun _ _ rho => tr (zig_to_eqrel R rho).

Definition zag_to_meqrel {X : Type} (R : Relation X) {x0 x1 : X}
  (zag : R x1 x0) : MEqRel R x0 x1
  := tr (zag_to_eqrel R zag).

Global Instance reflexive_meqrel {X : Type} (R : Relation X)
  : Reflexive (MEqRel R) := fun _ => tr (0%nat; idpath).

Global Instance transitive_meqrel {X : Type} (R : Relation X)
  : Transitive (MEqRel R).
Proof.
Proof.
  intros x0 x1 x2 rho01 rho12; strip_truncations.
  destruct rho12 as [m zzs].
  revert x1 x2 rho01 zzs.
  induction m as [|m IH]; intros.
  - induction zzs.
    exact (tr rho01).
  - destruct zzs as [x [zzs [zig|zag]]];
      pose proof (IHz := IH _ _ rho01 zzs); strip_truncations.
    + exact (tr (zig_cons R IHz zig)).
    + exact (tr (zag_cons R IHz zag)).
Defined.

Global Instance symmetric_meqrel {X : Type} (R : Relation X)
  : Symmetric (MEqRel R).
Proof.
  intros x0 x1; apply Trunc_rec; intros [n zzs].
  revert x0 x1 zzs.
  induction n as [|n IH].
  - intros ? ? p; exact (tr (0%nat; p^)).
  - intros ? ? [x [zzs zorz]].
    transitivity x.
    2: by apply IH.
    destruct zorz as [zig|zag].
    + exact (tr (zag_to_eqrel R zig)).
    + exact (tr (zig_to_eqrel R zag)).
Defined.

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API