# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2018 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrig <- function(x, y, weights=rep(1, nrow(x)), Z = NULL, cov.function="stationary.cov", cov.args = NULL, lambda = 0, m = 2, chol.args = NULL, find.trA = TRUE, NtrA = 20, iseed = 123, llambda = NULL, na.rm=FALSE, collapseFixedEffect = TRUE, ...) { # pull extra covariance arguments from ... and overwrite # any arguments already named in cov.args ind<- match( names( cov.args), names(list(...) ) ) cov.args = c(cov.args[is.na(ind)], list(...)) # #If cov.args$find.trA is true, set onlyUpper to FALSE (onlyUpper doesn't #play nice with predict.mKrig, called by mKrig.trace) # if(find.trA == TRUE && supportsArg(cov.function, "onlyUpper")) cov.args$onlyUpper= FALSE if(find.trA == TRUE && supportsArg(cov.function, "distMat")) cov.args$distMat= NA if (!is.null(llambda)) { lambda <- exp(llambda) } # see comments in Krig.engine.fixed for algorithmic commentary # # check for duplicate x's. # stop if there are any if (any(duplicated(cat.matrix(x)))) { stop("locations are not unique see help(mKrig) ") } # next function also omits NAs from x,y,weights, and Z if na.rm=TRUE. object<- mKrigCheckXY( x, y, weights, Z, na.rm = na.rm) # create fixed part of model as m-1 order polynomial # NOTE: if m==0 then fields.mkpoly returns a NULL to # indicate no polynomial part. Tmatrix <- cbind(fields.mkpoly(object$x, m), object$Z) # set some dimensions np <- nrow(object$x) if( is.null(Tmatrix) ){ nt<- 0 } else{ nt<- ncol(Tmatrix) } if( is.null(object$Z)){ nZ<- 0 } else{ nZ<- ncol(object$Z) } ind.drift <- c(rep(TRUE, (nt - nZ)), rep(FALSE, nZ)) # as a place holder for reduced rank Kriging, distinguish between # observations locations and the locations to evaluate covariance. # (this is will also allow predict.mKrig to handle a Krig object) object$knots <- object$x # covariance matrix at observation locations # NOTE: if cov.function is a sparse constuct then Mc will be sparse. # see e.g. wendland.cov Mc <- do.call(cov.function, c(cov.args, list(x1 = object$knots, x2 = object$knots))) # # decide how to handle the pivoting. # one wants to do pivoting if the matrix is sparse. # if Mc is not a matrix assume that it is in sparse format. # sparse.flag <- !is.matrix(Mc) # # set arguments that are passed to cholesky # if (is.null(chol.args)) { chol.args <- list(pivot = sparse.flag) } else { chol.args <- chol.args } # quantify sparsity of Mc for the mKrig object nzero <- ifelse(sparse.flag, length(Mc@entries), np^2) # add diagonal matrix that is the observation error Variance # NOTE: diag must be a overloaded function to handle sparse format. if (lambda != 0) { if(! sparse.flag) invisible(.Call("addToDiagC", Mc, as.double(lambda/object$weights), nrow(Mc), PACKAGE="fields") ) else diag(Mc) = diag(Mc) + lambda/object$weights } # MARK LINE Mc # At this point Mc is proportional to the covariance matrix of the # observation vector, y. # # cholesky decoposition of Mc # do.call used to supply other arguments to the function # especially for sparse applications. # If chol.args is NULL then this is the same as # Mc<-chol(Mc), chol.args)) Mc <- do.call("chol", c(list(x = Mc), chol.args)) lnDetCov <- 2 * sum(log(diag(Mc))) # # start linear algebra to find estimates and likelihood # Note that all these expressions make sense if y is a matrix # of several data sets and one is solving for the coefficients # of all of these at once. In this case d.coef and c.coef are matrices # if( !is.null(Tmatrix)){ # Efficent way to multply inverse of Mc times the Tmatrix VT <- forwardsolve(Mc, x = Tmatrix, k=ncol(Mc), transpose = TRUE, upper.tri = TRUE) qr.VT <- qr(VT) # now do generalized least squares for d d.coef <- as.matrix(qr.coef(qr.VT, forwardsolve(Mc, transpose = TRUE, object$y, upper.tri = TRUE))) if (collapseFixedEffect) { # use a common estimate of fixed effects across all replicates d.coefMeans <- rowMeans(d.coef) d.coef <- matrix(d.coefMeans, ncol = ncol(d.coef), nrow = nrow(d.coef)) } resid<- object$y - Tmatrix %*% d.coef # GLS covariance matrix for fixed part. Rinv <- solve(qr.R(qr.VT)) Omega <- Rinv %*% t(Rinv) # # Omega is solve(t(Tmatrix)%*%solve( Sigma)%*%Tmatrix) # where Sigma = cov.function( x,x) + lambda/object$weights # proportional to fixed effects covariance matrix. # for the GLS estimates of # the fixed linear part of the model. # # SEdcoef = diag( Omega) * rho.MLE.FULL # # if fixed effects are pooled across replicate fields then # adjust the Omega matrix to reflect a mean estimate. if (collapseFixedEffect) { Omega <- Omega/ ncol(d.coef) } R2diag<- diag( qr.R(qr.VT) )^2 lnDetOmega<- -1* sum( log(R2diag) ) } else{ # much is set to NULL because no fixed part of model nt<- 0 resid<- object$y Rinv<- NULL Omega<- NULL qr.VT<- NULL d.coef<- NULL lnDetOmega <- 0 } # and now find c. # the coefficents for the spatial part. # if linear fixed part included resid as the residuals from the # GLS regression. c.coef <- as.matrix(forwardsolve(Mc, transpose = TRUE, resid, upper.tri = TRUE)) # save intermediate result this is t(y- T d.coef)( M^{-1}) ( y- T d.coef) quad.form <- c(colSums(as.matrix(c.coef^2))) # find c coefficients c.coef <- as.matrix(backsolve(Mc, c.coef)) # MLE estimate of rho and sigma # rhohat <- c(colSums(as.matrix(c.coef * y)))/(np - nt) # NOTE if y is a matrix then each of these are vectors of parameters. rho.MLE <- quad.form/np rhohat <- c(colSums(as.matrix(c.coef * object$y)))/np shat.MLE <- sigma.MLE <- sqrt(lambda * rho.MLE) # the log profile likehood with rhohat and dhat substituted # leaving a profile for just lambda. # NOTE if y is a matrix then this is a vector of log profile # likelihood values. lnProfileLike <- (-np/2 - log(2 * pi) * (np/2) - (np/2) * log(rho.MLE) - (1/2) * lnDetCov) # see section 4.2 handbook of spatial statistics (Zimmermanchapter) lnProfileREML <- lnProfileLike + (1/2) * lnDetOmega rho.MLE.FULL <- mean(rho.MLE) sigma.MLE.FULL <- sqrt(lambda * rho.MLE.FULL) # if y is a matrix then compute the combined likelihood # under the assumption that the columns of y are replicated # fields lnProfileLike.FULL <- sum((-np/2 - log(2 * pi) * (np/2) - (np/2) * log(rho.MLE.FULL) - (1/2) * lnDetCov) ) lnProfileREML.FULL <- sum((-np/2 - log(2 * pi) * (np/2) - (np/2) * log(rho.MLE.FULL) - (1/2) * lnDetCov + (1/2) * lnDetOmega ) ) # # return coefficients and include lambda as a check because # results are meaningless for other values of lambda # returned list is an 'object' of class mKrig (micro Krig) # also save the matrix decompositions so coefficients can be # recalculated for new y values. Make sure onlyUpper and # distMat are unset for compatibility with mKrig S3 functions if(!is.null(cov.args$onlyUpper)) cov.args$onlyUpper = FALSE if(!is.null(cov.args$distMat)) cov.args$distMat = NA object <- c( object, list( d = d.coef, c = c.coef, nt = nt, np = np, lambda.fixed = lambda, cov.function.name = cov.function, args = cov.args, m = m, chol.args = chol.args, call = match.call(), nonzero.entries = nzero, shat.MLE = sigma.MLE, sigma.MLE = sigma.MLE, rho.MLE = rho.MLE, rhohat = rho.MLE, lnProfileLike = lnProfileLike, rho.MLE.FULL = rho.MLE.FULL, sigma.MLE.FULL = sigma.MLE.FULL, lnProfileLike.FULL = lnProfileLike.FULL, lnProfileREML.FULL = lnProfileREML.FULL, lnProfileREML = lnProfileREML, lnDetCov = lnDetCov, lnDetOmega = lnDetOmega, quad.form = quad.form, Omega = Omega,lnDetOmega=lnDetOmega, qr.VT = qr.VT, Mc = Mc, Tmatrix = Tmatrix, ind.drift = ind.drift, nZ = nZ, fixedEffectsCov = Omega * rho.MLE.FULL, # dcoefSE = sqrt(diag( Omega) * rho.MLE.FULL), collapseFixedEffect= collapseFixedEffect) ) # # find the residuals directly from solution # to avoid a call to predict object$residuals <- lambda * c.coef/object$weights object$fitted.values <- object$y - object$residuals # estimate effective degrees of freedom using Monte Carlo trace method. if (find.trA) { object2 <- mKrig.trace(object, iseed, NtrA) object$eff.df <- object2$eff.df object$trA.info <- object2$trA.info object$GCV <- (sum(object$residuals^2)/np)/(1 - object2$eff.df/np)^2 if (NtrA < np) { object$GCV.info <- (sum(object$residuals^2)/np)/(1 - object2$trA.info/np)^2 } else { object$GCV.info <- NA } } else { object$eff.df <- NA object$trA.info <- NA object$GCV <- NA } class(object) <- "mKrig" return(object) }