auxiliary.fcts.Rd
\name{CheckXT}
\alias{CheckXT}
\alias{PrepareModel}
\alias{convert.to.readable}
\alias{plotWithCircles}
\alias{GetDistributionNames}
\title{Internal functions -- do not use them directly}
\description{
\code{CheckXT} checks whether the coordinates of the data and related
parameters are specified correctly and transforms the coordinates into
a standard format
\code{PrepareModel} checks whether the parameters of the covariance
model and related parameters are specified correctly and transforms
the parameters into a standard format
\code{convert.to.readable} is the inverse function to
\code{PrepareModel}; see Details
\code{plotWithCircles} displays data values of marked point processes
by circles
\code{GetDistributionNames} returns the names of the currently
available marginal distributions of the random fields
}
\usage{
CheckXT(x, y, z, T, grid, gridtriple)
PrepareModel(model, param, timespacedim, trend, method=NULL, named=FALSE)
convert.to.readable(l, allowed=c("standard", "nested", "list"))
plotWithCircles(data, factor=1.0, xlim=range(data[,1])+c(-maxr,maxr),
ylim=range(data[,2])+c(-maxr,maxr),col=1, fill=0, ...)
GetDistributionNames()
}
\arguments{
\item{x}{\code{x} coordinates}
\item{y}{\code{y} coordinates}
\item{z}{\code{z} coordinates}
\item{T}{time instances}
\item{grid}{see \code{\link{GaussRF}}}
\item{gridtriple}{see \code{\link{GaussRF}}}
\cr
\item{model}{see \code{\link{GaussRF}}}
\item{param}{see \code{\link{GaussRF}}}
\item{timespacedim}{dimension of the random field including the time
dimension, if there is any}
\item{trend}{mean or trend of the random field}
\item{method}{simulation method}
\item{named}{logical. If \code{TRUE} \code{covnr} and \code{param}
are returned with names}
\cr
\item{l}{list as returned by \code{PrepareModel}}
\item{allowed}{allowed output formats, see
\code{\link{CovarianceFct}}}
\cr
\item{data}{matrix of 3 columns; first two columns give the
coordinates, the third the data}
\item{factor}{enlargement factor for data}
\item{xlim}{see \code{\link{plot}}}
\item{ylim}{see \code{\link{plot}}}
\item{col}{border colour of circles}
\item{fill}{filling colour of circles}
\item{...}{further graphical parameters}
}
\details{
\code{convert.to.readable} is roughly speaking the inverse function to
\code{PrepareModel}. \code{convert.to.readable} also tries to
simplify the model definition, but cannot rediscover the given method for
the simulation of the nugget effect in all cases. Due to the
simplification in \code{convert.to.readable} and the special
definition of the nugget effect for nested models,
\code{convert.to.readable} may return a correct model definition in case
of incorrect input, namely if \code{scale} is set to \eqn{0} in a list
definition, see Examples.
}
%\value{
% lists of internal parameters
%}
\author{Martin Schlather, \email{schlath@hsu-hh.de}
\url{http://www.unibw-hamburg.de/WWEB/math/schlath/schlather.html}}
\seealso{\command{\link{CovarianceFct}}}
\keyword{ spatial }%-- one or more ...
\keyword{internal}
\examples{
% library(RandomFields)
x <- function(...) {
str(PrepareModel(...))
cat("--------------------------------\n")
str(convert.to.readable(PrepareModel(...)))
}
model <- list(list(model="whi", kappa=5, var=2, s=4), "+",
list(model="whi", kappa=1, var=3, s=0)) ## s=0 should not be used only in
## a model definition where the parameters are
## are given in a matrix, see the result
x(model=model, ti=1, me="ci")
## since convert.to.readable performs a one-step simplification,
## iterative calls may further simplify the model
xx <- convert.to.readable(PrepareModel(model=model, ti=1, me="ci"))
x(model=xx$mo, pa=xx$pa, ti=1, me=xx$me)
## back to the matrix definition of nested models
str(convert.to.readable(PrepareModel(xx, ti=1), allowed="nested"))
## back to the (correct) list definition
str(convert.to.readable(PrepareModel(xx, ti=1), allowed="list"))
}