Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/GWmodel-Lab/GWmodel3
17 July 2023, 09:54:19 UTC
  • Code
  • Branches (2)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/feat/libgwmodel-v0.9
    • refs/heads/master
    No releases to show
  • 24841fa
  • /
  • src
  • /
  • gwr_basic.cpp
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:5b52b55f1ab0fb914133b069c7c615df062ba0fe
origin badgedirectory badge Iframe embedding
swh:1:dir:963e4b3f94bb22094092749ee8b8f9e021d5518c
origin badgerevision badge
swh:1:rev:66b5a8472a72f9876b8feacd5933cbf4d707e1cc
origin badgesnapshot badge
swh:1:snp:ea4737acdfb297942b56cae84d461147a8f76984

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 66b5a8472a72f9876b8feacd5933cbf4d707e1cc authored by HPDell on 03 July 2023, 10:00:43 UTC
edit: typo in README [skip ci]
Tip revision: 66b5a84
gwr_basic.cpp
#include <Rcpp.h>
#include <armadillo>
#include "utils.h"
#include "gwmodel.h"

using namespace std;
using namespace Rcpp;
using namespace arma;
using namespace gwm;

// [[Rcpp::export]]
List gwr_basic_fit(
    const NumericMatrix& x, const NumericVector& y, const NumericMatrix& coords,
    double bw, bool adaptive, size_t kernel, 
    bool longlat, double p, double theta,
    bool hatmatrix, bool intercept,
    size_t parallel_type, const IntegerVector& parallel_arg,
    bool optim_bw, size_t optim_bw_criterion,
    bool select_model, size_t select_model_criterion, size_t select_model_threshold
) {
    Logger::printer = r_printer;

    // Convert data types
    mat mx = myas(x);
    vec my = myas(y);
    mat mcoords = myas(coords);
    vector<int> vpar_args = as< vector<int> >(IntegerVector(parallel_arg));

    // Make Spatial Weight
    BandwidthWeight bandwidth(bw, adaptive, BandwidthWeight::KernelFunctionType((size_t)kernel));
    Distance* distance = nullptr;
    if (longlat)
    {
        distance = new CRSDistance(true);
    }
    else
    {
        if (p == 2.0 && theta == 0.0)
        {
            distance = new CRSDistance(false);
        }
        else
        {
            distance = new MinkwoskiDistance(p, theta);
        }
    }
    SpatialWeight spatial(&bandwidth, distance);
    
    // Make Algorithm Object
    GWRBasic algorithm(mx, my, mcoords, spatial, hatmatrix, intercept);
    algorithm.setIsAutoselectIndepVars(select_model);
    algorithm.setIndepVarSelectionThreshold(select_model_threshold);
    algorithm.setIsAutoselectBandwidth(optim_bw);
    algorithm.setBandwidthSelectionCriterion(GWRBasic::BandwidthSelectionCriterionType(size_t(optim_bw_criterion)));
    switch (ParallelType(size_t(parallel_type)))
    {
    case ParallelType::SerialOnly:
        algorithm.setParallelType(ParallelType::SerialOnly);
        break;
#ifdef _OPENMP
    case ParallelType::OpenMP:
        algorithm.setParallelType(ParallelType::OpenMP);
        algorithm.setOmpThreadNum(vpar_args[0]);
        break;
#endif
    default:
        algorithm.setParallelType(ParallelType::SerialOnly);
        break;
    }
    algorithm.fit();

    // Return Results
    mat betas = algorithm.betas();
    List result_list = List::create(
        Named("betas") = mywrap(betas),
        Named("betasSE") = mywrap(algorithm.betasSE()),
        Named("sTrace") = mywrap(algorithm.sHat()),
        Named("sHat") = mywrap(algorithm.s()),
        Named("diagnostic") = mywrap(algorithm.diagnostic())
    );
    if (optim_bw)
    {
        double bw_value = algorithm.spatialWeight().weight<BandwidthWeight>()->bandwidth();
        result_list["bandwidth"] = wrap(bw_value);
    }
    if (select_model)
    {
        vector<size_t> sel_vars = algorithm.selectedVariables();
        result_list["variables"] = wrap(sel_vars);
        result_list["model_sel_criterions"] = mywrap(algorithm.indepVarsSelectionCriterionList());
        mat x = mx.cols(VariableForwardSelector::index2uvec(sel_vars, intercept));
        result_list["fitted"] = mywrap(GWRBasic::Fitted(x, betas));
    }
    else
    {
        result_list["fitted"] = mywrap(GWRBasic::Fitted(mx, betas));
    }

    return result_list;
}


// [[Rcpp::export]]
NumericMatrix gwr_basic_predict(
    const NumericMatrix& pcoords,
    const NumericMatrix& x,
    const NumericVector& y,
    const NumericMatrix& coords,
    double bw,
    bool adaptive,
    size_t kernel,
    bool longlat,
    double p,
    double theta,
    bool intercept,
    size_t parallel_type,
    const IntegerVector& parallel_arg
) {
// Logger
    Logger::printer = r_printer;

    // Convert data types
    mat mpcoords = myas(pcoords);
    mat mx = myas(x);
    vec my = myas(y);
    mat mcoords = myas(coords);
    vector<int> vpar_args = as< vector<int> >(IntegerVector(parallel_arg));

    // Make Spatial Weight
    BandwidthWeight bandwidth(bw, adaptive, BandwidthWeight::KernelFunctionType((size_t)kernel));
    Distance* distance = nullptr;
    if (longlat)
    {
        distance = new CRSDistance(true);
    }
    else
    {
        if (p == 2.0 && theta == 0.0)
        {
            distance = new CRSDistance(false);
        }
        else
        {
            distance = new MinkwoskiDistance(p, theta);
        }
    }
    SpatialWeight spatial(&bandwidth, distance);
    
    // Make Algorithm Object
    GWRBasic algorithm(mx, my, mcoords, spatial, false, intercept);
    switch (ParallelType(size_t(parallel_type)))
    {
    case ParallelType::SerialOnly:
        algorithm.setParallelType(ParallelType::SerialOnly);
        break;
#ifdef _OPENMP
    case ParallelType::OpenMP:
        algorithm.setParallelType(ParallelType::OpenMP);
        algorithm.setOmpThreadNum(vpar_args[0]);
        break;
#endif
    default:
        algorithm.setParallelType(ParallelType::SerialOnly);
        break;
    }

    // Return Results
    mat betas = algorithm.predict(mpcoords);

    return mywrap(betas);
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API