Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:2c68a6c5a8af2f06ac2c0225927f25b54fd1f9d0
  • Code
  • Branches (24)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1.0
    • refs/tags/0.10.0
    • refs/tags/0.10.5
    • refs/tags/0.11.0
    • refs/tags/0.11.5
    • refs/tags/0.12.1
    • refs/tags/0.13.0
    • refs/tags/0.2.0
    • refs/tags/0.2.2
    • refs/tags/0.2.5
    • refs/tags/0.3.0
    • refs/tags/0.4.0
    • refs/tags/0.5.0
    • refs/tags/0.5.1
    • refs/tags/0.5.2
    • refs/tags/0.5.3
    • refs/tags/0.6.0
    • refs/tags/0.7.0
    • refs/tags/0.7.2
    • refs/tags/0.7.5
    • refs/tags/0.8.0
    • refs/tags/0.8.2
    • refs/tags/0.9.0
    No releases to show
  • 1f0a22c
  • /
  • inst
  • /
  • doc
  • /
  • indicesEstimationComparison.html
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:5f40c9cf890b492728405b0592d3d7b111d2bcdc
directory badge Iframe embedding
swh:1:dir:cfa272b2679423ca4a494b7b41d15be0683d72d7
revision badge
swh:1:rev:3da49db3cf0eea4d2c5eba241ddb5470cd7dd929
snapshot badge
swh:1:snp:2c68a6c5a8af2f06ac2c0225927f25b54fd1f9d0
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 3da49db3cf0eea4d2c5eba241ddb5470cd7dd929 authored by Dominique Makowski on 26 January 2021, 16:40:03 UTC
version 0.8.2
Tip revision: 3da49db
indicesEstimationComparison.html
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" href="data:text/css,%0A%40font%2Dface%20%7B%0Afont%2Dfamily%3A%20octicons%2Dlink%3B%0Asrc%3A%20url%28data%3Afont%2Fwoff%3Bcharset%3Dutf%2D8%3Bbase64%2Cd09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM%2B8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB%2FaFGpk3jaTY6xa8JAGMW%2FO62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v%2Bk%2F0an2i%2BitHDw3v2%2B9%2BDBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3%2FI7AtxEJLtzzuZfI%2BVVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy%2FLt7Kc%2B0vWY%2FgAgIIEqAN9we0pwKXreiMasxvabDQMM4riO%2BqxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw%2Bymhce7vwM9jSqO8JyVd5RH9gyTt2%2BJ%2FyUmYlIR0s04n6%2B7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv%2FocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi%2BW2%2BMjCzMIDApSwvXzC97Z4Ig8N%2FBxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh%2F8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT%2BAEjAwuDFpBmA9KMDEwMCh9i%2Fv8H8sH0%2F4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9%2FlqYwOGZxeUelN2U2R6%2BcArgtCJpauW7UQBqnFkUsjAY%2FkOU1cP%2BDAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl%2BvvmM%2FbyA48e6tWrKArm4ZJlCbdsrxksL1AwWn%2FyBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO%2F%2FsdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd%2F89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF%2B9JOS0nbaaYDCQfwCJ7Au3AHj%2BLO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm%2BEBXuAbHmIMSRMs%2B4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL%2BhD7C1xoaHeLJSEao0FEW14ckxC%2BTU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13%2F%2Blm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl%2B9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O%2FAdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB%2F%2F%2FAA8AAQAAAAAAAAAAAAAAAAABAAAAAA%3D%3D%29%20format%28%27woff%27%29%3B%0A%7D%0Abody%20%7B%0A%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A%20100%25%3B%0Atext%2Dsize%2Dadjust%3A%20100%25%3B%0Acolor%3A%20%23333%3B%0Afont%2Dfamily%3A%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20%22Segoe%20UI%22%2C%20Arial%2C%20freesans%2C%20sans%2Dserif%2C%20%22Apple%20Color%20Emoji%22%2C%20%22Segoe%20UI%20Emoji%22%2C%20%22Segoe%20UI%20Symbol%22%3B%0Afont%2Dsize%3A%2016px%3B%0Aline%2Dheight%3A%201%2E6%3B%0Aword%2Dwrap%3A%20break%2Dword%3B%0A%7D%0Aa%20%7B%0Abackground%2Dcolor%3A%20transparent%3B%0A%7D%0Aa%3Aactive%2C%0Aa%3Ahover%20%7B%0Aoutline%3A%200%3B%0A%7D%0Astrong%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Ah1%20%7B%0Afont%2Dsize%3A%202em%3B%0Amargin%3A%200%2E67em%200%3B%0A%7D%0Aimg%20%7B%0Aborder%3A%200%3B%0A%7D%0Ahr%20%7B%0Abox%2Dsizing%3A%20content%2Dbox%3B%0Aheight%3A%200%3B%0A%7D%0Apre%20%7B%0Aoverflow%3A%20auto%3B%0A%7D%0Acode%2C%0Akbd%2C%0Apre%20%7B%0Afont%2Dfamily%3A%20monospace%2C%20monospace%3B%0Afont%2Dsize%3A%201em%3B%0A%7D%0Ainput%20%7B%0Acolor%3A%20inherit%3B%0Afont%3A%20inherit%3B%0Amargin%3A%200%3B%0A%7D%0Ahtml%20input%5Bdisabled%5D%20%7B%0Acursor%3A%20default%3B%0A%7D%0Ainput%20%7B%0Aline%2Dheight%3A%20normal%3B%0A%7D%0Ainput%5Btype%3D%22checkbox%22%5D%20%7B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0Apadding%3A%200%3B%0A%7D%0Atable%20%7B%0Aborder%2Dcollapse%3A%20collapse%3B%0Aborder%2Dspacing%3A%200%3B%0A%7D%0Atd%2C%0Ath%20%7B%0Apadding%3A%200%3B%0A%7D%0A%2A%20%7B%0Abox%2Dsizing%3A%20border%2Dbox%3B%0A%7D%0Ainput%20%7B%0Afont%3A%2013px%20%2F%201%2E4%20Helvetica%2C%20arial%2C%20nimbussansl%2C%20liberationsans%2C%20freesans%2C%20clean%2C%20sans%2Dserif%2C%20%22Apple%20Color%20Emoji%22%2C%20%22Segoe%20UI%20Emoji%22%2C%20%22Segoe%20UI%20Symbol%22%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%234078c0%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%2C%0Aa%3Aactive%20%7B%0Atext%2Ddecoration%3A%20underline%3B%0A%7D%0Ahr%20%7B%0Aheight%3A%200%3B%0Amargin%3A%2015px%200%3B%0Aoverflow%3A%20hidden%3B%0Abackground%3A%20transparent%3B%0Aborder%3A%200%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23ddd%3B%0A%7D%0Ahr%3Abefore%20%7B%0Adisplay%3A%20table%3B%0Acontent%3A%20%22%22%3B%0A%7D%0Ahr%3Aafter%20%7B%0Adisplay%3A%20table%3B%0Aclear%3A%20both%3B%0Acontent%3A%20%22%22%3B%0A%7D%0Ah1%2C%0Ah2%2C%0Ah3%2C%0Ah4%2C%0Ah5%2C%0Ah6%20%7B%0Amargin%2Dtop%3A%2015px%3B%0Amargin%2Dbottom%3A%2015px%3B%0Aline%2Dheight%3A%201%2E1%3B%0A%7D%0Ah1%20%7B%0Afont%2Dsize%3A%2030px%3B%0A%7D%0Ah2%20%7B%0Afont%2Dsize%3A%2021px%3B%0A%7D%0Ah3%20%7B%0Afont%2Dsize%3A%2016px%3B%0A%7D%0Ah4%20%7B%0Afont%2Dsize%3A%2014px%3B%0A%7D%0Ah5%20%7B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0Ah6%20%7B%0Afont%2Dsize%3A%2011px%3B%0A%7D%0Ablockquote%20%7B%0Amargin%3A%200%3B%0A%7D%0Aul%2C%0Aol%20%7B%0Apadding%3A%200%3B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Aol%20ol%2C%0Aul%20ol%20%7B%0Alist%2Dstyle%2Dtype%3A%20lower%2Droman%3B%0A%7D%0Aul%20ul%20ol%2C%0Aul%20ol%20ol%2C%0Aol%20ul%20ol%2C%0Aol%20ol%20ol%20%7B%0Alist%2Dstyle%2Dtype%3A%20lower%2Dalpha%3B%0A%7D%0Add%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0Apre%20%7B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%200%3B%0Afont%3A%2012px%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0A%7D%0A%2Eselect%3A%3A%2Dms%2Dexpand%20%7B%0Aopacity%3A%200%3B%0A%7D%0A%2Eocticon%20%7B%0Afont%3A%20normal%20normal%20normal%2016px%2F1%20octicons%2Dlink%3B%0Adisplay%3A%20inline%2Dblock%3B%0Atext%2Ddecoration%3A%20none%3B%0Atext%2Drendering%3A%20auto%3B%0A%2Dwebkit%2Dfont%2Dsmoothing%3A%20antialiased%3B%0A%2Dmoz%2Dosx%2Dfont%2Dsmoothing%3A%20grayscale%3B%0A%2Dwebkit%2Duser%2Dselect%3A%20none%3B%0A%2Dmoz%2Duser%2Dselect%3A%20none%3B%0A%2Dms%2Duser%2Dselect%3A%20none%3B%0Auser%2Dselect%3A%20none%3B%0A%7D%0A%2Eocticon%2Dlink%3Abefore%20%7B%0Acontent%3A%20%27%5Cf05c%27%3B%0A%7D%0A%2Emarkdown%2Dbody%3Abefore%20%7B%0Adisplay%3A%20table%3B%0Acontent%3A%20%22%22%3B%0A%7D%0A%2Emarkdown%2Dbody%3Aafter%20%7B%0Adisplay%3A%20table%3B%0Aclear%3A%20both%3B%0Acontent%3A%20%22%22%3B%0A%7D%0A%2Emarkdown%2Dbody%3E%2A%3Afirst%2Dchild%20%7B%0Amargin%2Dtop%3A%200%20%21important%3B%0A%7D%0A%2Emarkdown%2Dbody%3E%2A%3Alast%2Dchild%20%7B%0Amargin%2Dbottom%3A%200%20%21important%3B%0A%7D%0Aa%3Anot%28%5Bhref%5D%29%20%7B%0Acolor%3A%20inherit%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0A%2Eanchor%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Apadding%2Dright%3A%202px%3B%0Amargin%2Dleft%3A%20%2D18px%3B%0A%7D%0A%2Eanchor%3Afocus%20%7B%0Aoutline%3A%20none%3B%0A%7D%0Ah1%2C%0Ah2%2C%0Ah3%2C%0Ah4%2C%0Ah5%2C%0Ah6%20%7B%0Amargin%2Dtop%3A%201em%3B%0Amargin%2Dbottom%3A%2016px%3B%0Afont%2Dweight%3A%20bold%3B%0Aline%2Dheight%3A%201%2E4%3B%0A%7D%0Ah1%20%2Eocticon%2Dlink%2C%0Ah2%20%2Eocticon%2Dlink%2C%0Ah3%20%2Eocticon%2Dlink%2C%0Ah4%20%2Eocticon%2Dlink%2C%0Ah5%20%2Eocticon%2Dlink%2C%0Ah6%20%2Eocticon%2Dlink%20%7B%0Acolor%3A%20%23000%3B%0Avertical%2Dalign%3A%20middle%3B%0Avisibility%3A%20hidden%3B%0A%7D%0Ah1%3Ahover%20%2Eanchor%2C%0Ah2%3Ahover%20%2Eanchor%2C%0Ah3%3Ahover%20%2Eanchor%2C%0Ah4%3Ahover%20%2Eanchor%2C%0Ah5%3Ahover%20%2Eanchor%2C%0Ah6%3Ahover%20%2Eanchor%20%7B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Ah1%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah2%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah3%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah4%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah5%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%2C%0Ah6%3Ahover%20%2Eanchor%20%2Eocticon%2Dlink%20%7B%0Avisibility%3A%20visible%3B%0A%7D%0Ah1%20%7B%0Apadding%2Dbottom%3A%200%2E3em%3B%0Afont%2Dsize%3A%202%2E25em%3B%0Aline%2Dheight%3A%201%2E2%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23eee%3B%0A%7D%0Ah1%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%3B%0A%7D%0Ah2%20%7B%0Apadding%2Dbottom%3A%200%2E3em%3B%0Afont%2Dsize%3A%201%2E75em%3B%0Aline%2Dheight%3A%201%2E225%3B%0Aborder%2Dbottom%3A%201px%20solid%20%23eee%3B%0A%7D%0Ah2%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%3B%0A%7D%0Ah3%20%7B%0Afont%2Dsize%3A%201%2E5em%3B%0Aline%2Dheight%3A%201%2E43%3B%0A%7D%0Ah3%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E2%3B%0A%7D%0Ah4%20%7B%0Afont%2Dsize%3A%201%2E25em%3B%0A%7D%0Ah4%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E2%3B%0A%7D%0Ah5%20%7B%0Afont%2Dsize%3A%201em%3B%0A%7D%0Ah5%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E1%3B%0A%7D%0Ah6%20%7B%0Afont%2Dsize%3A%201em%3B%0Acolor%3A%20%23777%3B%0A%7D%0Ah6%20%2Eanchor%20%7B%0Aline%2Dheight%3A%201%2E1%3B%0A%7D%0Ap%2C%0Ablockquote%2C%0Aul%2C%0Aol%2C%0Adl%2C%0Atable%2C%0Apre%20%7B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%2016px%3B%0A%7D%0Ahr%20%7B%0Aheight%3A%204px%3B%0Apadding%3A%200%3B%0Amargin%3A%2016px%200%3B%0Abackground%2Dcolor%3A%20%23e7e7e7%3B%0Aborder%3A%200%20none%3B%0A%7D%0Aul%2C%0Aol%20%7B%0Apadding%2Dleft%3A%202em%3B%0A%7D%0Aul%20ul%2C%0Aul%20ol%2C%0Aol%20ol%2C%0Aol%20ul%20%7B%0Amargin%2Dtop%3A%200%3B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Ali%3Ep%20%7B%0Amargin%2Dtop%3A%2016px%3B%0A%7D%0Adl%20%7B%0Apadding%3A%200%3B%0A%7D%0Adl%20dt%20%7B%0Apadding%3A%200%3B%0Amargin%2Dtop%3A%2016px%3B%0Afont%2Dsize%3A%201em%3B%0Afont%2Dstyle%3A%20italic%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Adl%20dd%20%7B%0Apadding%3A%200%2016px%3B%0Amargin%2Dbottom%3A%2016px%3B%0A%7D%0Ablockquote%20%7B%0Apadding%3A%200%2015px%3B%0Acolor%3A%20%23777%3B%0Aborder%2Dleft%3A%204px%20solid%20%23ddd%3B%0A%7D%0Ablockquote%3E%3Afirst%2Dchild%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Ablockquote%3E%3Alast%2Dchild%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Atable%20%7B%0Adisplay%3A%20block%3B%0Awidth%3A%20100%25%3B%0Aoverflow%3A%20auto%3B%0Aword%2Dbreak%3A%20normal%3B%0Aword%2Dbreak%3A%20keep%2Dall%3B%0A%7D%0Atable%20th%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Atable%20th%2C%0Atable%20td%20%7B%0Apadding%3A%206px%2013px%3B%0Aborder%3A%201px%20solid%20%23ddd%3B%0A%7D%0Atable%20tr%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Aborder%2Dtop%3A%201px%20solid%20%23ccc%3B%0A%7D%0Atable%20tr%3Anth%2Dchild%282n%29%20%7B%0Abackground%2Dcolor%3A%20%23f8f8f8%3B%0A%7D%0Aimg%20%7B%0Amax%2Dwidth%3A%20100%25%3B%0Abox%2Dsizing%3A%20content%2Dbox%3B%0Abackground%2Dcolor%3A%20%23fff%3B%0A%7D%0Acode%20%7B%0Apadding%3A%200%3B%0Apadding%2Dtop%3A%200%2E2em%3B%0Apadding%2Dbottom%3A%200%2E2em%3B%0Amargin%3A%200%3B%0Afont%2Dsize%3A%2085%25%3B%0Abackground%2Dcolor%3A%20rgba%280%2C0%2C0%2C0%2E04%29%3B%0Aborder%2Dradius%3A%203px%3B%0A%7D%0Acode%3Abefore%2C%0Acode%3Aafter%20%7B%0Aletter%2Dspacing%3A%20%2D0%2E2em%3B%0Acontent%3A%20%22%5C00a0%22%3B%0A%7D%0Apre%3Ecode%20%7B%0Apadding%3A%200%3B%0Amargin%3A%200%3B%0Afont%2Dsize%3A%20100%25%3B%0Aword%2Dbreak%3A%20normal%3B%0Awhite%2Dspace%3A%20pre%3B%0Abackground%3A%20transparent%3B%0Aborder%3A%200%3B%0A%7D%0A%2Ehighlight%20%7B%0Amargin%2Dbottom%3A%2016px%3B%0A%7D%0A%2Ehighlight%20pre%2C%0Apre%20%7B%0Apadding%3A%2016px%3B%0Aoverflow%3A%20auto%3B%0Afont%2Dsize%3A%2085%25%3B%0Aline%2Dheight%3A%201%2E45%3B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0A%7D%0A%2Ehighlight%20pre%20%7B%0Amargin%2Dbottom%3A%200%3B%0Aword%2Dbreak%3A%20normal%3B%0A%7D%0Apre%20%7B%0Aword%2Dwrap%3A%20normal%3B%0A%7D%0Apre%20code%20%7B%0Adisplay%3A%20inline%3B%0Amax%2Dwidth%3A%20initial%3B%0Apadding%3A%200%3B%0Amargin%3A%200%3B%0Aoverflow%3A%20initial%3B%0Aline%2Dheight%3A%20inherit%3B%0Aword%2Dwrap%3A%20normal%3B%0Abackground%2Dcolor%3A%20transparent%3B%0Aborder%3A%200%3B%0A%7D%0Apre%20code%3Abefore%2C%0Apre%20code%3Aafter%20%7B%0Acontent%3A%20normal%3B%0A%7D%0Akbd%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Apadding%3A%203px%205px%3B%0Afont%2Dsize%3A%2011px%3B%0Aline%2Dheight%3A%2010px%3B%0Acolor%3A%20%23555%3B%0Avertical%2Dalign%3A%20middle%3B%0Abackground%2Dcolor%3A%20%23fcfcfc%3B%0Aborder%3A%20solid%201px%20%23ccc%3B%0Aborder%2Dbottom%2Dcolor%3A%20%23bbb%3B%0Aborder%2Dradius%3A%203px%3B%0Abox%2Dshadow%3A%20inset%200%20%2D1px%200%20%23bbb%3B%0A%7D%0A%2Epl%2Dc%20%7B%0Acolor%3A%20%23969896%3B%0A%7D%0A%2Epl%2Dc1%2C%0A%2Epl%2Ds%20%2Epl%2Dv%20%7B%0Acolor%3A%20%230086b3%3B%0A%7D%0A%2Epl%2De%2C%0A%2Epl%2Den%20%7B%0Acolor%3A%20%23795da3%3B%0A%7D%0A%2Epl%2Ds%20%2Epl%2Ds1%2C%0A%2Epl%2Dsmi%20%7B%0Acolor%3A%20%23333%3B%0A%7D%0A%2Epl%2Dent%20%7B%0Acolor%3A%20%2363a35c%3B%0A%7D%0A%2Epl%2Dk%20%7B%0Acolor%3A%20%23a71d5d%3B%0A%7D%0A%2Epl%2Dpds%2C%0A%2Epl%2Ds%2C%0A%2Epl%2Ds%20%2Epl%2Dpse%20%2Epl%2Ds1%2C%0A%2Epl%2Dsr%2C%0A%2Epl%2Dsr%20%2Epl%2Dcce%2C%0A%2Epl%2Dsr%20%2Epl%2Dsra%2C%0A%2Epl%2Dsr%20%2Epl%2Dsre%20%7B%0Acolor%3A%20%23183691%3B%0A%7D%0A%2Epl%2Dv%20%7B%0Acolor%3A%20%23ed6a43%3B%0A%7D%0A%2Epl%2Did%20%7B%0Acolor%3A%20%23b52a1d%3B%0A%7D%0A%2Epl%2Dii%20%7B%0Abackground%2Dcolor%3A%20%23b52a1d%3B%0Acolor%3A%20%23f8f8f8%3B%0A%7D%0A%2Epl%2Dsr%20%2Epl%2Dcce%20%7B%0Acolor%3A%20%2363a35c%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dml%20%7B%0Acolor%3A%20%23693a17%3B%0A%7D%0A%2Epl%2Dmh%2C%0A%2Epl%2Dmh%20%2Epl%2Den%2C%0A%2Epl%2Dms%20%7B%0Acolor%3A%20%231d3e81%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dmq%20%7B%0Acolor%3A%20%23008080%3B%0A%7D%0A%2Epl%2Dmi%20%7B%0Acolor%3A%20%23333%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Epl%2Dmb%20%7B%0Acolor%3A%20%23333%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dmd%20%7B%0Abackground%2Dcolor%3A%20%23ffecec%3B%0Acolor%3A%20%23bd2c00%3B%0A%7D%0A%2Epl%2Dmi1%20%7B%0Abackground%2Dcolor%3A%20%23eaffea%3B%0Acolor%3A%20%2355a532%3B%0A%7D%0A%2Epl%2Dmdr%20%7B%0Acolor%3A%20%23795da3%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Epl%2Dmo%20%7B%0Acolor%3A%20%231d3e81%3B%0A%7D%0Akbd%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0Apadding%3A%203px%205px%3B%0Afont%3A%2011px%20Consolas%2C%20%22Liberation%20Mono%22%2C%20Menlo%2C%20Courier%2C%20monospace%3B%0Aline%2Dheight%3A%2010px%3B%0Acolor%3A%20%23555%3B%0Avertical%2Dalign%3A%20middle%3B%0Abackground%2Dcolor%3A%20%23fcfcfc%3B%0Aborder%3A%20solid%201px%20%23ccc%3B%0Aborder%2Dbottom%2Dcolor%3A%20%23bbb%3B%0Aborder%2Dradius%3A%203px%3B%0Abox%2Dshadow%3A%20inset%200%20%2D1px%200%20%23bbb%3B%0A%7D%0A%2Etask%2Dlist%2Ditem%20%7B%0Alist%2Dstyle%2Dtype%3A%20none%3B%0A%7D%0A%2Etask%2Dlist%2Ditem%2B%2Etask%2Dlist%2Ditem%20%7B%0Amargin%2Dtop%3A%203px%3B%0A%7D%0A%2Etask%2Dlist%2Ditem%20input%20%7B%0Amargin%3A%200%200%2E35em%200%2E25em%20%2D1%2E6em%3B%0Avertical%2Dalign%3A%20middle%3B%0A%7D%0A%3Achecked%2B%2Eradio%2Dlabel%20%7B%0Az%2Dindex%3A%201%3B%0Aposition%3A%20relative%3B%0Aborder%2Dcolor%3A%20%234078c0%3B%0A%7D%0A%2EsourceLine%20%7B%0Adisplay%3A%20inline%2Dblock%3B%0A%7D%0Acode%20%2Ekw%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Edt%20%7B%20color%3A%20%23ed6a43%3B%20%7D%0Acode%20%2Edv%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Ebn%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Efl%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Ech%20%7B%20color%3A%20%23009999%3B%20%7D%0Acode%20%2Est%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%2Eco%20%7B%20color%3A%20%23969896%3B%20%7D%0Acode%20%2Eot%20%7B%20color%3A%20%230086b3%3B%20%7D%0Acode%20%2Eal%20%7B%20color%3A%20%23a61717%3B%20%7D%0Acode%20%2Efu%20%7B%20color%3A%20%2363a35c%3B%20%7D%0Acode%20%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%0Acode%20%2Ewa%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Ecn%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Esc%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Evs%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%2Ess%20%7B%20color%3A%20%23183691%3B%20%7D%0Acode%20%2Eim%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Eva%20%7Bcolor%3A%20%23008080%3B%20%7D%0Acode%20%2Ecf%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Eop%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Ebu%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Eex%20%7B%20color%3A%20%23000000%3B%20%7D%0Acode%20%2Epp%20%7B%20color%3A%20%23999999%3B%20%7D%0Acode%20%2Eat%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Edo%20%7B%20color%3A%20%23969896%3B%20%7D%0Acode%20%2Ean%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Ecv%20%7B%20color%3A%20%23008080%3B%20%7D%0Acode%20%2Ein%20%7B%20color%3A%20%23008080%3B%20%7D%0A">
<style>
body {
  box-sizing: border-box;
  min-width: 200px;
  max-width: 980px;
  margin: 0 auto;
  padding: 45px;
  padding-top: 0px;
}
</style>

</head>

<body>

<h1 id="in-depth-1-comparison-of-point-estimates">In-Depth 1: Comparison of Point-Estimates</h1>
<ul>
<li><a href="#effect-point-estimates-in-the-bayesian-framework">Effect Point-Estimates in the Bayesian Framework</a>
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#experiment-1-relationship-with-error-noise-and-sample-size">Experiment 1: Relationship with Error (Noise) and Sample Size</a>
<ul>
<li><a href="#methods">Methods</a></li>
<li><a href="#results">Results</a></li>
</ul></li>
<li><a href="#experiment-2-relationship-with-sampling-characteristics">Experiment 2: Relationship with Sampling Characteristics</a>
<ul>
<li><a href="#methods-1">Methods</a></li>
<li><a href="#results-1">Results</a></li>
</ul></li>
<li><a href="#experiment-3-relationship-with-priors-specification">Experiment 3: Relationship with Priors Specification</a></li>
<li><a href="#discussion">Discussion</a></li>
</ul></li>
</ul>
<p>This vignette can be referred to by citing the package:</p>
<ul>
<li>Makowski, D., Ben-Shachar, M. S., &amp; Lüdecke, D. (2019). <em>bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework</em>. Journal of Open Source Software, 4(40), 1541. <a href="https://doi.org/10.21105/joss.01541">https://doi.org/10.21105/joss.01541</a></li>
</ul>
<hr />
<h1 id="effect-point-estimates-in-the-bayesian-framework">Effect Point-Estimates in the Bayesian Framework</h1>
<h2 id="introduction">Introduction</h2>
<p>One of the main difference between the Bayesian and the frequentist frameworks is that the former returns a probability distribution of each effect (<em>i.e.</em>, parameter of interest of a model, such as a regression slope) instead of a single value. However, there is still a need and demand, for reporting or use in further analysis, for a single value (<strong>point-estimate</strong>) that best characterise the underlying posterior distribution.</p>
<p>There are three main indices used in the literature for effect estimation: the <strong>mean</strong>, the <strong>median</strong> or the <strong>MAP</strong> (Maximum A Posteriori) estimate (roughly corresponding to the mode (the “peak”) of the distribution). Unfortunately, there is no consensus about which one to use, as no systematic comparison has ever been done.</p>
<p>In the present work, we will compare these three point-estimates of effect between themselves, as well as with the widely known <strong>beta</strong>, extracted from a comparable frequentist model. With this comparison, we expect to draw bridges and relationships between the two frameworks, helping and easing the transition for the public.</p>
<h2 id="experiment-1-relationship-with-error-noise-and-sample-size">Experiment 1: Relationship with Error (Noise) and Sample Size</h2>
<h3 id="methods">Methods</h3>
<p>The simulation aimed at modulating the following characteristics:</p>
<ul>
<li><strong>Model type</strong>: linear or logistic.</li>
<li><strong>“True” effect</strong> (original regression coefficient from which data is drawn): Can be 1 or 0 (no effect).</li>
<li><strong>Sample size</strong>: From 20 to 100 by steps of 10.</li>
<li><strong>Error</strong>: Gaussian noise applied to the predictor with SD uniformly spread between 0.33 and 6.66 (with 1000 different values).</li>
</ul>
<p>We generated a dataset for each combination of these characteristics, resulting in a total of <code>2 * 2 * 9 * 1000 = 36000</code> Bayesian and frequentist models. The code used for generation is avaible <a href="https://easystats.github.io/circus/articles/bayesian_indices.html">here</a> (please note that it takes usually several days/weeks to complete).</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(see)</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(parameters)</span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">&quot;https://raw.github.com/easystats/circus/master/data/bayesSim_study1.csv&quot;</span>)</span></code></pre></div>
<h3 id="results">Results</h3>
<h4 id="sensitivity-to-noise">Sensitivity to Noise</h4>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>df <span class="sc">%&gt;%</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(error, true_effect, outcome_type, Coefficient, Median, Mean, MAP) <span class="sc">%&gt;%</span></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">gather</span>(estimate, value, <span class="sc">-</span>error, <span class="sc">-</span>true_effect, <span class="sc">-</span>outcome_type) <span class="sc">%&gt;%</span></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">temp =</span> <span class="fu">as.factor</span>(<span class="fu">cut</span>(error, <span class="dv">10</span>, <span class="at">labels =</span> <span class="cn">FALSE</span>))) <span class="sc">%&gt;%</span> </span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(temp) <span class="sc">%&gt;%</span> </span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">error_group =</span> <span class="fu">round</span>(<span class="fu">mean</span>(error), <span class="dv">1</span>)) <span class="sc">%&gt;%</span> </span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ungroup</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(value <span class="sc">&lt;</span> <span class="dv">6</span>) <span class="sc">%&gt;%</span> </span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> error_group, <span class="at">y =</span> value, <span class="at">fill =</span> estimate, <span class="at">group =</span> <span class="fu">interaction</span>(estimate, error_group))) <span class="sc">+</span></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>  <span class="co"># geom_hline(yintercept = 0) +</span></span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>  <span class="co"># geom_point(alpha=0.05, size=2, stroke = 0, shape=16) +</span></span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>  <span class="co"># geom_smooth(method=&quot;loess&quot;) +</span></span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_boxplot</span>(<span class="at">outlier.shape=</span><span class="cn">NA</span>) <span class="sc">+</span></span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_modern</span>() <span class="sc">+</span></span>
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_fill_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">&quot;Coefficient&quot;</span> <span class="ot">=</span> <span class="st">&quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> <span class="ot">=</span> <span class="st">&quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FFEB3B&quot;</span>),</span>
<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a>                    <span class="at">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="sc">+</span></span>
<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ylab</span>(<span class="st">&quot;Point-estimate&quot;</span>) <span class="sc">+</span></span>
<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">xlab</span>(<span class="st">&quot;Noise&quot;</span>) <span class="sc">+</span></span>
<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span> outcome_type <span class="sc">*</span> true_effect, <span class="at">scales=</span><span class="st">&quot;free&quot;</span>) </span></code></pre></div>
<p><img src="" /><!-- --></p>
<h4 id="sensitivity-to-sample-size">Sensitivity to Sample Size</h4>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>df <span class="sc">%&gt;%</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(sample_size, true_effect, outcome_type, Coefficient, Median, Mean, MAP) <span class="sc">%&gt;%</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">gather</span>(estimate, value, <span class="sc">-</span>sample_size, <span class="sc">-</span>true_effect, <span class="sc">-</span>outcome_type) <span class="sc">%&gt;%</span></span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">temp =</span> <span class="fu">as.factor</span>(<span class="fu">cut</span>(sample_size, <span class="dv">10</span>, <span class="at">labels =</span> <span class="cn">FALSE</span>))) <span class="sc">%&gt;%</span> </span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(temp) <span class="sc">%&gt;%</span> </span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">size_group =</span> <span class="fu">round</span>(<span class="fu">mean</span>(sample_size))) <span class="sc">%&gt;%</span> </span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ungroup</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(value <span class="sc">&lt;</span> <span class="dv">6</span>) <span class="sc">%&gt;%</span> </span>
<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> size_group, <span class="at">y =</span> value, <span class="at">fill =</span> estimate, <span class="at">group =</span> <span class="fu">interaction</span>(estimate, size_group))) <span class="sc">+</span></span>
<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>  <span class="co"># geom_hline(yintercept = 0) +</span></span>
<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>  <span class="co"># geom_point(alpha=0.05, size=2, stroke = 0, shape=16) +</span></span>
<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>  <span class="co"># geom_smooth(method=&quot;loess&quot;) +</span></span>
<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_boxplot</span>(<span class="at">outlier.shape=</span><span class="cn">NA</span>) <span class="sc">+</span></span>
<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_modern</span>() <span class="sc">+</span></span>
<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_fill_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">&quot;Coefficient&quot;</span> <span class="ot">=</span> <span class="st">&quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> <span class="ot">=</span> <span class="st">&quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FFEB3B&quot;</span>),</span>
<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>                    <span class="at">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="sc">+</span></span>
<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ylab</span>(<span class="st">&quot;Point-estimate&quot;</span>) <span class="sc">+</span></span>
<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">xlab</span>(<span class="st">&quot;Sample size&quot;</span>) <span class="sc">+</span></span>
<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span> outcome_type <span class="sc">*</span> true_effect, <span class="at">scales=</span><span class="st">&quot;free&quot;</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<h4 id="statistical-modelling">Statistical Modelling</h4>
<p>We fitted a (frequentist) multiple linear regression to statistically test the the predict the presence or absence of effect with the estimates as well as their interaction with noise and sample size.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>df <span class="sc">%&gt;%</span></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(sample_size, error, true_effect, outcome_type, Coefficient, Median, Mean, MAP) <span class="sc">%&gt;%</span></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>  tidyr<span class="sc">::</span><span class="fu">pivot_longer</span>(<span class="fu">c</span>(<span class="sc">-</span>sample_size, <span class="sc">-</span>error, <span class="sc">-</span>true_effect, <span class="sc">-</span>outcome_type), <span class="at">names_to=</span><span class="st">&quot;estimate&quot;</span>) <span class="sc">%&gt;%</span></span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">glm</span>(true_effect <span class="sc">~</span> outcome_type <span class="sc">/</span> estimate <span class="sc">/</span> value, <span class="at">data=</span>., <span class="at">family=</span><span class="st">&quot;binomial&quot;</span>) <span class="sc">%&gt;%</span></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  parameters<span class="sc">::</span><span class="fu">parameters</span>(<span class="at">df_method=</span><span class="st">&quot;wald&quot;</span>) <span class="sc">%&gt;%</span></span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(Parameter, Coefficient, p) <span class="sc">%&gt;%</span></span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(stringr<span class="sc">::</span><span class="fu">str_detect</span>(Parameter, <span class="st">&#39;outcome_type&#39;</span>),</span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>         stringr<span class="sc">::</span><span class="fu">str_detect</span>(Parameter, <span class="st">&#39;:value&#39;</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">arrange</span>(<span class="fu">desc</span>(Coefficient)) <span class="sc">%&gt;%</span> </span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>  knitr<span class="sc">::</span><span class="fu">kable</span>(<span class="at">digits=</span><span class="dv">2</span>) </span></code></pre></div>
<table>
<thead>
<tr class="header">
<th align="left">Parameter</th>
<th align="right">Coefficient</th>
<th align="right">p</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">outcome_typelinear:estimateMean:value</td>
<td align="right">10.85</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typelinear:estimateMedian:value</td>
<td align="right">10.84</td>
<td align="right">0</td>
</tr>
<tr class="odd">
<td align="left">outcome_typelinear:estimateMAP:value</td>
<td align="right">10.72</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typelinear:estimateCoefficient:value</td>
<td align="right">10.54</td>
<td align="right">0</td>
</tr>
<tr class="odd">
<td align="left">outcome_typebinary:estimateMAP:value</td>
<td align="right">4.39</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typebinary:estimateMedian:value</td>
<td align="right">4.28</td>
<td align="right">0</td>
</tr>
<tr class="odd">
<td align="left">outcome_typebinary:estimateMean:value</td>
<td align="right">4.21</td>
<td align="right">0</td>
</tr>
<tr class="even">
<td align="left">outcome_typebinary:estimateCoefficient:value</td>
<td align="right">3.87</td>
<td align="right">0</td>
</tr>
</tbody>
</table>
<!-- REMOVE THIS TABLE ONCE NEW PARAMETERS IS ON CRAN SO IT CAN BE GENERATED ON THE RUN-->

<p>This suggests that, in order to delineate between the presence and the absence of an effect, compared to the frequentist’s beta:</p>
<ul>
<li>For linear models, the <strong>Mean</strong> was the better predictor, closely followed by the <strong>Median</strong>, the <strong>MAP</strong> and the frequentist <strong>Coefficient</strong>.</li>
<li>For logistic models, the <strong>MAP</strong> was the better predictor, followed by the <strong>Median</strong>, the <strong>Mean</strong> and, behind, the frequentist <strong>Coefficient</strong>.</li>
</ul>
<p>Overall, the <strong>median</strong> seems to be appears as a safe and approriate choice, maintaining a a high performance accross different types of models.</p>
<!-- ```{r, message=FALSE, warning=FALSE} -->

<!-- df %>% -->

<!--   select(sample_size, error, true_effect, outcome_type, beta, Median, Mean, MAP) %>% -->

<!--   gather(estimate, value, -sample_size, -error, -true_effect, -outcome_type) %>% -->

<!--   glm(true_effect ~ outcome_type / value * estimate * sample_size * error, data=., family="binomial") %>% -->

<!--   broom::tidy() %>% -->

<!--   select(term, estimate, p=p.value) %>% -->

<!--   filter(stringr::str_detect(term, 'outcome_type'), -->

<!--          stringr::str_detect(term, ':value')) %>% -->

<!--   mutate( -->

<!--     sample_size = stringr::str_detect(term, 'sample_size'), -->

<!--     error = stringr::str_detect(term, 'error'), -->

<!--     term = stringr::str_remove(term, "estimate"), -->

<!--     term = stringr::str_remove(term, "outcome_type"), -->

<!--     p = paste0(sprintf("%.2f", p), ifelse(p < .001, "***", ifelse(p < .01, "**", ifelse(p < .05, "*", ""))))) %>% -->

<!--   arrange(sample_size, error, term) %>%  -->

<!--   select(-sample_size, -error) %>%  -->

<!--   knitr::kable(digits=2)  -->

<!-- ``` -->

<!-- This suggests that, in order to delineate between the presence and the absence of an effect, compared to the frequentist's beta: -->

<!-- - For linear Models; -->

<!--   - The **mean**, followed closely by the **median**, and the **MAP** estimate had a superior performance, altough not significantly. -->

<!--   - The **mean**, followed closely by the **median**, and the **MAP** estimate, were less affected by noise, altough not significantly. -->

<!--   - No difference for the sensitivity to sample size was found. -->

<!-- - For logistic models: -->

<!--   - The **MAP** estimate, followed by the **median** and the **mean**, estimate had a superior performance. -->

<!--   - The **MAP** estimate, followed by the **median**, and the **mean**, were less affected by noise, altough not significantly. -->

<!--   - The **MAP** estimate, followed by the **mean**, and the **median**, were less affected by sample size, altough not significantly. -->

<h2 id="experiment-2-relationship-with-sampling-characteristics">Experiment 2: Relationship with Sampling Characteristics</h2>
<h3 id="methods-1">Methods</h3>
<p>The simulation aimed at modulating the following characteristics:</p>
<ul>
<li><strong>Model type</strong>: linear or logistic.</li>
<li><strong>“True” effect</strong> (original regression coefficient from which data is drawn): Can be 1 or 0 (no effect).</li>
<li><strong>draws</strong>: from 10 to 5000 by step of 5 (1000 iterations).</li>
<li><strong>warmup</strong>: Ratio of warmup iterations. from 1/10 to 9/10 by step of 0.1 (9 iterations).</li>
</ul>
<p>We generated 3 datasets for each combination of these characteristics, resulting in a total of <code>2 * 2 * 8 * 40 * 9 * 3 = 34560</code> Bayesian and frequentist models. The code used for generation is avaible <a href="https://easystats.github.io/circus/articles/bayesian_indices.html">here</a> (please note that it takes usually several days/weeks to complete).</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">&quot;https://raw.github.com/easystats/circus/master/data/bayesSim_study2.csv&quot;</span>)</span></code></pre></div>
<h3 id="results-1">Results</h3>
<h4 id="sensitivity-to-number-of-iterations">Sensitivity to number of iterations</h4>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>df <span class="sc">%&gt;%</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(iterations, true_effect, outcome_type, beta, Median, Mean, MAP) <span class="sc">%&gt;%</span></span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">gather</span>(estimate, value, <span class="sc">-</span>iterations, <span class="sc">-</span>true_effect, <span class="sc">-</span>outcome_type) <span class="sc">%&gt;%</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">temp =</span> <span class="fu">as.factor</span>(<span class="fu">cut</span>(iterations, <span class="dv">5</span>, <span class="at">labels =</span> <span class="cn">FALSE</span>))) <span class="sc">%&gt;%</span> </span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(temp) <span class="sc">%&gt;%</span> </span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">iterations_group =</span> <span class="fu">round</span>(<span class="fu">mean</span>(iterations), <span class="dv">1</span>)) <span class="sc">%&gt;%</span> </span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ungroup</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(value <span class="sc">&lt;</span> <span class="dv">6</span>) <span class="sc">%&gt;%</span></span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> iterations_group, <span class="at">y =</span> value, <span class="at">fill =</span> estimate, <span class="at">group =</span> <span class="fu">interaction</span>(estimate, iterations_group))) <span class="sc">+</span></span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_boxplot</span>(<span class="at">outlier.shape=</span><span class="cn">NA</span>) <span class="sc">+</span></span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_classic</span>() <span class="sc">+</span></span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_fill_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">&quot;beta&quot;</span> <span class="ot">=</span> <span class="st">&quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> <span class="ot">=</span> <span class="st">&quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FFEB3B&quot;</span>),</span>
<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>                    <span class="at">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="sc">+</span></span>
<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ylab</span>(<span class="st">&quot;Point-estimate of the true value 0</span><span class="sc">\n</span><span class="st">&quot;</span>) <span class="sc">+</span></span>
<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">xlab</span>(<span class="st">&quot;</span><span class="sc">\n</span><span class="st">Number of Iterations&quot;</span>) <span class="sc">+</span></span>
<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span> outcome_type <span class="sc">*</span> true_effect, <span class="at">scales=</span><span class="st">&quot;free&quot;</span>) </span></code></pre></div>
<p><img src="" /><!-- --></p>
<h4 id="sensitivity-to-warmup-ratio">Sensitivity to warmup ratio</h4>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>df <span class="sc">%&gt;%</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">warmup =</span> warmup <span class="sc">/</span> iterations) <span class="sc">%&gt;%</span> </span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(warmup, true_effect, outcome_type, beta, Median, Mean, MAP) <span class="sc">%&gt;%</span></span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">gather</span>(estimate, value, <span class="sc">-</span>warmup, <span class="sc">-</span>true_effect, <span class="sc">-</span>outcome_type) <span class="sc">%&gt;%</span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">temp =</span> <span class="fu">as.factor</span>(<span class="fu">cut</span>(warmup, <span class="dv">3</span>, <span class="at">labels =</span> <span class="cn">FALSE</span>))) <span class="sc">%&gt;%</span> </span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(temp) <span class="sc">%&gt;%</span> </span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">warmup_group =</span> <span class="fu">round</span>(<span class="fu">mean</span>(warmup), <span class="dv">1</span>)) <span class="sc">%&gt;%</span> </span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ungroup</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(value <span class="sc">&lt;</span> <span class="dv">6</span>) <span class="sc">%&gt;%</span> </span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> warmup_group, <span class="at">y =</span> value, <span class="at">fill =</span> estimate, <span class="at">group =</span> <span class="fu">interaction</span>(estimate, warmup_group))) <span class="sc">+</span></span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_boxplot</span>(<span class="at">outlier.shape=</span><span class="cn">NA</span>) <span class="sc">+</span></span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_classic</span>() <span class="sc">+</span></span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_fill_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">&quot;beta&quot;</span> <span class="ot">=</span> <span class="st">&quot;#607D8B&quot;</span>, <span class="st">&quot;MAP&quot;</span> <span class="ot">=</span> <span class="st">&quot;#795548&quot;</span>, <span class="st">&quot;Mean&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FF9800&quot;</span>, <span class="st">&quot;Median&quot;</span> <span class="ot">=</span> <span class="st">&quot;#FFEB3B&quot;</span>),</span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>                    <span class="at">name =</span> <span class="st">&quot;Index&quot;</span>) <span class="sc">+</span></span>
<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ylab</span>(<span class="st">&quot;Point-estimate of the true value 0</span><span class="sc">\n</span><span class="st">&quot;</span>) <span class="sc">+</span></span>
<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">xlab</span>(<span class="st">&quot;</span><span class="sc">\n</span><span class="st">Number of Iterations&quot;</span>) <span class="sc">+</span></span>
<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span> outcome_type <span class="sc">*</span> true_effect, <span class="at">scales=</span><span class="st">&quot;free&quot;</span>) </span></code></pre></div>
<p><img src="" /><!-- --></p>
<h2 id="experiment-3-relationship-with-priors-specification">Experiment 3: Relationship with Priors Specification</h2>
<h2 id="discussion">Discussion</h2>
<p>Conclusions can be found in the <a href="https://easystats.github.io/bayestestR/articles/guidelines.html">guidelines section</a>.</p>

</body>
</html>

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API