Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/open-mmlab/Amphion
09 September 2024, 06:46:44 UTC
  • Code
  • Branches (2)
  • Releases (3)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • refs/heads/revert-154-FACodec-readme
    • v0.1.1-alpha
    • v0.1.0-alpha
    • v0.1.0
  • 56bf8b6
  • /
  • config
  • /
  • base.json
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
  • release
origin badgecontent badge Iframe embedding
swh:1:cnt:60690ef3d3ded7ecb7af37fb2e7cd3948dc71a04
origin badgedirectory badge Iframe embedding
swh:1:dir:62d5641add7f2aa5df539ee9f769f142de149cd2
origin badgerevision badge
swh:1:rev:6e9d34f498b41f12f889923566ddaafd6f50e8cc
origin badgesnapshot badge
swh:1:snp:bef780d851faeac80aef6db569e51e66f505bf34
origin badgerelease badge
swh:1:rel:6230564a0d0723e504a798ac355fb6a95da5605d

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
  • release
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 6e9d34f498b41f12f889923566ddaafd6f50e8cc authored by zyingt on 23 February 2024, 15:03:35 UTC
Support Multi-speaker VITS (#131)
Tip revision: 6e9d34f
base.json
{
  "supported_model_type": [
    "GANVocoder",
    "Fastspeech2",
    "DiffSVC",
    "Transformer",
    "EDM",
    "CD"
  ],
  "task_type": "",
  "dataset": [],
  "use_custom_dataset": [],
  "preprocess": {
    "phone_extractor": "espeak", // "espeak, pypinyin, pypinyin_initials_finals, lexicon"
    // trim audio silence
    "data_augment": false,
    "trim_silence": false,
    "num_silent_frames": 8,
    "trim_fft_size": 512, // fft size used in trimming
    "trim_hop_size": 128, // hop size used in trimming
    "trim_top_db": 30, // top db used in trimming sensitive to each dataset
    // acoustic features
    "extract_mel": false,
    "mel_extract_mode": "",
    "extract_linear_spec": false,
    "extract_mcep": false,
    "extract_pitch": false,
    "extract_acoustic_token": false,
    "pitch_remove_outlier": false,
    "extract_uv": false,
    "pitch_norm": false,
    "extract_audio": false,
    "extract_label": false,
    "pitch_extractor": "parselmouth", // pyin, dio, pyworld, pyreaper, parselmouth, CWT (Continuous Wavelet Transform)
    "extract_energy": false,
    "energy_remove_outlier": false,
    "energy_norm": false,
    "energy_extract_mode": "from_mel",
    "extract_duration": false,
    "extract_amplitude_phase": false,
    "mel_min_max_norm": false,
    // lingusitic features
    "extract_phone": false,
    "lexicon_path": "./text/lexicon/librispeech-lexicon.txt", 
    // content features
    "extract_whisper_feature": false,
    "extract_contentvec_feature": false,
    "extract_mert_feature": false,
    "extract_wenet_feature": false,
    // Settings for data preprocessing
    "n_mel": 80,
    "win_size": 480,
    "hop_size": 120,
    "sample_rate": 24000,
    "n_fft": 1024,
    "fmin": 0,
    "fmax": 12000,
    "min_level_db": -115,
    "ref_level_db": 20,
    "bits": 8,
    // Directory names of processed data or extracted features
    "processed_dir": "processed_data",
    "trimmed_wav_dir": "trimmed_wavs", // directory name of silence trimed wav
    "raw_data": "raw_data",
    "phone_dir": "phones",
    "wav_dir": "wavs", // directory name of processed wav (such as downsampled waveform)
    "audio_dir": "audios",
    "log_amplitude_dir": "log_amplitudes",
    "phase_dir": "phases",
    "real_dir": "reals",
    "imaginary_dir": "imaginarys",
    "label_dir": "labels",
    "linear_dir": "linears",
    "mel_dir": "mels", // directory name of extraced mel features
    "mcep_dir": "mcep", // directory name of extraced mcep features
    "dur_dir": "durs",
    "symbols_dict": "symbols.dict",
    "lab_dir": "labs", // directory name of extraced label features
    "wenet_dir": "wenet", // directory name of extraced wenet features
    "contentvec_dir": "contentvec", // directory name of extraced wenet features
    "pitch_dir": "pitches", // directory name of extraced pitch features
    "energy_dir": "energys", // directory name of extracted energy features
    "phone_pitch_dir": "phone_pitches", // directory name of extraced pitch features
    "phone_energy_dir": "phone_energys", // directory name of extracted energy features
    "uv_dir": "uvs", // directory name of extracted unvoiced features
    "duration_dir": "duration", // ground-truth duration file
    "phone_seq_file": "phone_seq_file", // phoneme sequence file
    "file_lst": "file.lst",
    "train_file": "train.json", // training set, the json file contains detailed information about the dataset, including dataset name, utterance id, duration of the utterance
    "valid_file": "valid.json", // validattion set
    "spk2id": "spk2id.json", // used for multi-speaker dataset
    "utt2spk": "utt2spk", // used for multi-speaker dataset
    "emo2id": "emo2id.json", // used for multi-emotion dataset
    "utt2emo": "utt2emo", // used for multi-emotion dataset
    // Features used for model training
    "use_text": false,
    "use_phone": false,   
    "use_phn_seq": false,
    "use_lab": false,
    "use_linear": false,
    "use_mel": false,
    "use_min_max_norm_mel": false,
    "use_wav": false,
    "use_phone_pitch": false,
    "use_log_scale_pitch": false,
    "use_phone_energy": false,
    "use_phone_duration": false,
    "use_log_scale_energy": false,
    "use_wenet": false,
    "use_dur": false,
    "use_spkid": false, // True: use speaker id for multi-speaker dataset
    "use_emoid": false, // True: use emotion id for multi-emotion dataset
    "use_frame_pitch": false,
    "use_uv": false,
    "use_frame_energy": false,
    "use_frame_duration": false,
    "use_audio": false,
    "use_label": false,
    "use_one_hot": false,
    "use_amplitude_phase": false,
    "data_augment": false,
    "align_mel_duration": false
  },
  "train": {
    "ddp": true,
    "random_seed": 970227,
    "batch_size": 16,
    "max_steps": 1000000,
    // Trackers
    "tracker": [
      "tensorboard"
      // "wandb",
      // "cometml",
      // "mlflow",
    ],
    "max_epoch": -1,
    // -1 means no limit
    "save_checkpoint_stride": [
      5,
      20
    ],
    // unit is epoch
    "keep_last": [
      3,
      -1
    ],
    // -1 means infinite, if one number will broadcast
    "run_eval": [
      false,
      true
    ],
    // if one number will broadcast
    // Fix the random seed
    "random_seed": 10086,
    // Optimizer
    "optimizer": "AdamW",
    "adamw": {
      "lr": 4.0e-4
      // nn model lr
    },
    // LR Scheduler
    "scheduler": "ReduceLROnPlateau",
    "reducelronplateau": {
      "factor": 0.8,
      "patience": 10,
      // unit is epoch
      "min_lr": 1.0e-4
    },
    // Batchsampler
    "sampler": {
      "holistic_shuffle": true,
      "drop_last": true
    },
    // Dataloader
    "dataloader": {
      "num_worker": 32,
      "pin_memory": true
    },
    "gradient_accumulation_step": 1,
    "total_training_steps": 50000,
    "save_summary_steps": 500,
    "save_checkpoints_steps": 10000,
    "valid_interval": 10000,
    "keep_checkpoint_max": 5,
    "multi_speaker_training": false, // True: train multi-speaker model; False: training single-speaker model;
    "max_epoch": -1,
    // -1 means no limit
    "save_checkpoint_stride": [
      5,
      20
    ],
    // unit is epoch
    "keep_last": [
      3,
      -1
    ],
    // -1 means infinite, if one number will broadcast
    "run_eval": [
      false,
      true
    ],
    // Batchsampler
    "sampler": {
      "holistic_shuffle": true,
      "drop_last": true
    },
    // Dataloader
    "dataloader": {
      "num_worker": 32,
      "pin_memory": true
    },
    // Trackers
    "tracker": [
      "tensorboard"
      // "wandb",
      // "cometml",
      // "mlflow",
    ],
  },
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API