\name{tauAMH} \alias{tauAMH} \title{Ali-Mikhail-Haq ("AMH")'s Kendall's Tau} \description{ Compute Kendall's Tau of an Ali-Mikhail-Haq ("AMH") Archimedean copula with parameter \code{theta}. While that's analytically given explicitly, as \deqn{1-\frac{2((1-\theta)^2\log(1-\theta) + \theta)}{3\theta^2},}{ 1 - 2((1-t)(1-t)log(1-t) + t)/(3*t^2),} for \code{th}\eqn{=\theta}{=t}; numerically, care has to be taken when \eqn{\theta \to 0}, avoiding accuracy loss already, for example, for \eqn{\theta} as large as \code{theta = 0.001}. } \details{ For small \code{th} (\eqn{=\theta}), we use Taylor series approximations of up to order 7, \deqn{\tau_A(\theta) = \frac{2}{9}\theta(1 + \theta(\frac 1 4 + \frac{\theta}{10}(1 + \theta(\frac 1 2 + \theta \frac 2 7)))) + O(\theta^6),}{% tau[A](th) = 2*th/9 *(1 + th*(1/4 + th/10* (1 + th*(1/2 + th*2/7)))) + O(th^6),} where found that dropping the last two terms (e.g., only using 5 terms from the \eqn{k=7} term Taylor polynomial) is actually numerically advantageous. } \usage{ tauAMH(th) } \arguments{ \item{th}{numeric vector with values in \eqn{[0,1]}.} } \value{ a vector of the same length as \code{th} (\eqn{= \theta}), with \eqn{\tau} values in \eqn{[0, 1/3]}, of \eqn{\tau_A(\theta) = 1 - 2(\theta+(1-\theta)^2\log(1-\theta))/(3\theta^2)}{% tau.A(th) = 1 - 2*((1-th)*(1-th)*log(1-th) + th) / (3*th^2)}, numerically accurately, to at least around 12 decimal digits. } \author{Martin Maechler, June 2010} \seealso{ \code{\link{acopula-families}}, and their class definition, \code{"\linkS4class{acopula}"}. } \examples{ tauAMH(c(0, 2^-40, 2^-20)) curve(tauAMH, 0, 1) curve(tauAMH, 1e-12, 1, log="xy") # linear, tau ~= 2/9*theta in the limit } \keyword{distribution}