Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/webstorms/NeuralPred
25 October 2023, 12:25:23 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • 1484b1ae509bf58a2cc2f711e525fd1d225b9b79
    No releases to show
  • 33bd8bc
  • /
  • src
  • /
  • analysis.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:613b1dc9d7c8f8430953654aa9eb9ce57cdda439
origin badgedirectory badge Iframe embedding
swh:1:dir:d8bd3e5fd7d60a5a2ec27a02f227568d99ed43e9
origin badgerevision badge
swh:1:rev:1484b1ae509bf58a2cc2f711e525fd1d225b9b79
origin badgesnapshot badge
swh:1:snp:6339994a7950c54e7ba2ea5c36f12d918cd3535e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 1484b1ae509bf58a2cc2f711e525fd1d225b9b79 authored by Luke Taylor on 07 October 2023, 15:17:28 UTC
typo fix
Tip revision: 1484b1a
analysis.py
import torch
import pandas as pd
from brainbox.physiology import neural

from src import datasets, train, util


class PVC1ModelQuery:
    static_model_query = {
        "vgg": {"3.1": [0.66, 1.0, 1.5]},
        "bwt": {"None": [0.66, 1.0, 1.5]}
    }
    dynamic_model_query = {
        "stack_prediction_4-6-2_True":
            {"1": [0.66, 1.0, 1.5],
             "2": [0.66, 1.0, 1.5],
             "3": [0.66, 1.0, 1.5],
             "4": [0.66, 1.0, 1.5]
             },
        "stack_compression_4-6-8_True":
            {"1": [0.66, 1.0, 1.5],
             "2": [0.66, 1.0, 1.5],
             "3": [0.66, 1.0, 1.5],
             "4": [0.66, 1.0, 1.5]
             },
        "stack_slowness_4-6_True":
            {"1": [0.66, 1.0, 1.5],
             "2": [0.66, 1.0, 1.5],
             "3": [0.66, 1.0, 1.5],
             "4": [0.66, 1.0, 1.5]
             },
        "prednet":
            {"E0": [0.66, 1.0, 1.5],
             "E1": [0.66, 1.0],
             "E2": [0.66, 1.0, 1.5],
             "E3": [0.66, 1.0, 1.5]
             }
    }

    def __init__(self, root, nspan=3):
        all_model_query = {**PVC1ModelQuery.static_model_query, **PVC1ModelQuery.dynamic_model_query}
        self._pvc1_metrics_builder = DatasetMetricsBuilder(root, all_model_query, "multi_pvc1", nspan=nspan)
        self._pvc1_metrics_builder.build()
        self._metrics_df = self._pvc1_metrics_builder.metrics_df.set_index(["model", "layer", "scale"])

    def get_metrics_df(self):
        return self._metrics_df

    def get_best_df(self):
        model_query = self.get_best_df_idx()
        metrics_df = self.get_metrics_df().loc[model_query].reset_index()

        return metrics_df

    def get_best_df_idx(self):
        return self.get_metrics_df().groupby(["model", "layer", "scale"]).mean().groupby(["model"]).idxmax()["cc_norm"]


class CadenaModelQuery:
    static_model_query = {
        "vgg": {"3.1": [0.66, 1.0, 1.5]},
        "bwt": {"None": [0.66, 1.0, 1.5]}
    }
    dynamic_model_query = {
        "stack_prediction_4-6-2_True":
            {"1": [0.66, 1.0, 1.5],
             "2": [0.66, 1.0, 1.5],
             "3": [0.66, 1.0, 1.5],
             "4": [0.66, 1.0, 1.5]
             },
        "stack_compression_4-6-8_True":
            {"1": [0.66, 1.0, 1.5],
             "2": [0.66, 1.0, 1.5],
             "3": [0.66, 1.0, 1.5],
             "4": [0.66, 1.0, 1.5]
             },
        "stack_slowness_4-6_True":
            {"1": [0.66, 1.0, 1.5],
             "2": [0.66, 1.0, 1.5],
             "3": [0.66, 1.0, 1.5],
             "4": [0.66, 1.0, 1.5]
             },
        "prednet":
            {"E0": [0.66, 1.0, 1.5],
             "E1": [0.66, 1.0],
             "E2": [0.66, 1.0],
             "E3": [0.66, 1.0, 1.5]
             }
    }

    def __init__(self, root, nspan=3):
        self._static_cadena_metrics_builder = DatasetMetricsBuilder(root, CadenaModelQuery.static_model_query, "cadena", nlat=0, nspan=1)
        self._static_cadena_metrics_builder.build()
        self._dynamic_cadena_metrics_builder = DatasetMetricsBuilder(root, CadenaModelQuery.dynamic_model_query, "cadena", nspan=nspan)
        self._dynamic_cadena_metrics_builder.build()
        self._metrics_df = pd.concat([self._static_cadena_metrics_builder.metrics_df.set_index(["model", "layer", "scale"]), self._dynamic_cadena_metrics_builder.metrics_df.set_index(["model", "layer", "scale"])])

    def get_metrics_df(self):
        return self._metrics_df

    def get_best_df(self):
        model_query = self.get_best_df_idx()
        metrics_df = self.get_metrics_df().loc[model_query].reset_index()

        return metrics_df

    def get_best_df_idx(self):
        return self.get_metrics_df().groupby(["model", "layer", "scale"]).mean().groupby(["model"]).idxmax()["cc_norm"]


class DatasetMetricsBuilder:

    # Build results for a given dictionary of models (i.e. model_query) on a given dataset

    def __init__(self, root, model_query, dataset, ntau=25, nlat=1, nspan=6, n_pca=500):
        self._root = root
        self._model_query = model_query
        self._dataset = dataset
        self._ntau = ntau
        self._nlat = nlat
        self._nspan = nspan
        self._n_pca = n_pca

        self._metrics = {}

    @property
    def metrics(self):
        return self._metrics

    @property
    def metrics_df(self):
        model_list = []
        layer_list = []
        scale_list = []
        cc_list = []
        cc_norm_list = []
        cc_spe_list = []

        for key in self._metrics.keys():
            model, layer, scale = key
            cc = self._metrics[key]["cc"]
            cc_norm = self._metrics[key]["cc_norm"]
            cc_spe = self._metrics[key]["cc_spe"]
            n = len(cc_spe)

            model_list.extend(n * [model])
            layer_list.extend(n * [layer])
            scale_list.extend(n * [scale])
            cc_list.extend(cc.numpy())
            cc_norm_list.extend(cc_norm.numpy())
            cc_spe_list.extend(cc_spe.numpy())

        return pd.DataFrame({"model": model_list, "layer": layer_list, "scale": scale_list, "cc": cc_list, "cc_norm": cc_norm_list, "cc_spe": cc_spe_list})

    def get_summary(self, contract_model_layer=False):
        multi_index_list = []
        cc_list = []
        cc_norm_list = []
        cc_spe_list = []

        for model in self._model_query.keys():
            for layer in self._model_query[model].keys():
                for scale in self._model_query[model][layer]:
                    scale = str(scale)
                    multi_index_list.append([model, layer, scale])
                    cc_list.append(self._metrics[(model, layer, scale)]["cc"].mean().item())
                    cc_norm_list.append(self._metrics[(model, layer, scale)]["cc_norm"].mean().item())
                    cc_spe_list.append(self._metrics[(model, layer, scale)]["cc_spe"].mean().item())

        multi_index_df = pd.DataFrame(multi_index_list, columns=["model", "layer", "scale"])
        summary_df = pd.DataFrame({"cc": cc_list, "cc_norm": cc_norm_list, "cc_spe": cc_spe_list}, index=pd.MultiIndex.from_frame(multi_index_df))

        if contract_model_layer:
            summary_df = summary_df.reset_index()
            summary_df["model"] = summary_df["model"] + "_" + summary_df["layer"]
            del summary_df["layer"]

        return summary_df

    def build(self):
        for model in self._model_query.keys():
            for layer in self._model_query[model].keys():
                for scale in self._model_query[model][layer]:
                    scale = str(scale)
                    metrics = ModelMetricsBuilder(self._root, self._dataset, ntau=self._ntau, nlat=self._nlat, nspan=self._nspan, scale=scale, model=model, layer=layer, n_pca=self._n_pca)
                    metrics.build()
                    self._metrics[(model, layer, scale)] = metrics.metrics


class ModelMetricsBuilder:

    # Build results for a single model on a given dataset

    def __init__(self, root, dataset, ntau, nlat, nspan, scale, model, layer, n_pca):
        self._dataset = dataset

        self._model = self._load_model(root, model, dataset, ntau, nlat, nspan, scale, n_pca, layer)
        self._test_data = datasets.PCDataset(root, model, dataset, "test", ntau=ntau, nlat=nlat, nspan=nspan, scale=scale, n_pca=n_pca, layer=layer)

        self.output = self._compute_output().permute(1, 0)
        self.target = self._test_data.y
        if len(self.target.shape) == 3:  # Average over repeats
            self.target = self.target.mean(dim=2).detach().cpu().permute(1, 0)
        mask = util.get_valid_neurons(dataset, thresh=0.2)  # 0.2
        self.output = self.output[mask]
        self.target = self.target[mask]
        self.max_cc = util.get_dataset_max_ccs(dataset, "ccnorm")[mask]
        self.max_spe = util.get_dataset_max_ccs(dataset, "spe")[mask]

        self._metrics = {}

    @property
    def metrics(self):
        if len(self._metrics) == 0:
            self._metrics = self.build()

        return self._metrics

    def build(self):
        cc = neural.cc(self.output, self.target)
        cc_norm = cc / self.max_cc
        cc_spe = cc / self.max_spe

        metrics = {"cc": cc, "cc_norm": cc_norm, "cc_spe": cc_spe}

        return metrics

    def _compute_output(self):
        with torch.no_grad():
            return self._model(self._test_data.x.cuda().float()).cpu().detach()

    def _load_model(self, root, model, dataset, ntau, nlat, nspan, scale, n_pca, layer):
        model_name = util.get_dataset_x_name(model, dataset, "train", ntau, nlat, nspan, scale, n_pca, layer)
        model_path = f"{root}/results/{model_name}/models"

        return train.Trainer.load_model(model_path, "0")

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top