Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:613e748a555a89bb74f545aa0292ffb277534f06

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
//
// Created by max on 01.08.22.
//

#include <setgraph/boost_adapter.hpp>
#include "pds.hpp"
#include "graphml/graphml.hpp"

#include <boost/property_map/function_property_map.hpp>

namespace pds {

PowerGrid import_graphml(const std::string& filename, bool all_zero_injection) {
    PowerGrid graph;
    boost::dynamic_properties attr(boost::ignore_other_properties);
    map<PowerGrid::vertex_descriptor, long> zero_injection_data;
    boost::associative_property_map zero_injection(zero_injection_data);
    auto id_map = [&graph](const PowerGrid::vertex_descriptor& vertex) -> long& { return graph[vertex].id;};
    auto name_map = [&graph](PowerGrid::vertex_descriptor vertex) -> std::string& { return graph[vertex].name; };
    boost::function_property_map<decltype(id_map), PowerGrid::vertex_descriptor> id(id_map);
    boost::function_property_map<decltype(name_map), PowerGrid::vertex_descriptor> name(name_map);
    attr.property("zero_injection", zero_injection);//make_vector_property_map(long_zi, graph));
    attr.property("name", name);
    attr.property("id", id);
    std::ifstream graph_in(filename);
    pds::read_graphml(graph_in, graph, attr);
    graph_in.close();
    for (auto v: graph.vertices()) {
        graph[v].zero_injection = zero_injection[v] || all_zero_injection;
    }
    return graph;
}

set<PowerGrid::vertex_descriptor> observationNeighborhood(const PowerGrid &graph, const set<PowerGrid::vertex_descriptor> &starts) {
    set<PowerGrid::vertex_descriptor> observed;
    for (auto v: starts) {
        observed.insert(v);
        for (auto w: graph.neighbors(v)) {
            observed.insert(w);
        }
    }
    propagate(graph, observed);
    return observed;
}

void PdsState::addEdge(Vertex source, Vertex target) {
    if (!m_graph.edge(source, target)) {
        m_graph.addEdge(source, target);
        if (!isObserved(source)) {
            m_unobserved_degree[target] += 1;
        }
        if (!isObserved(target)) {
            m_unobserved_degree[source] += 1;
        }
    }
}

void PdsState::removeVertex(Vertex v) {
    if (!isObserved(v)) {
        for (auto w: m_graph.neighbors(v)) {
            m_unobserved_degree[w] -= 1;
            propagate(w);
        }
    }
    m_graph.removeVertex(v);
}

void PdsState::propagate(PdsState::Vertex vertex) {
    if (isObserved(vertex) && isZeroInjection(vertex) && m_unobserved_degree[vertex] == 1) {
        for (auto w: m_graph.neighbors(vertex)) {
            observe(w);
        }
    }
}

void PdsState::observe(PdsState::Vertex vertex) {
    if (!isObserved(vertex)) {
        m_observed.insert(vertex);
        for (auto w: m_graph.neighbors(vertex)) {
            m_unobserved_degree[w] -= 1;
            assert(m_unobserved_degree[w] >= 0);
            propagate(w);
        }
        propagate(vertex);
    }
}

bool PdsState::disableLowDegreeRecursive(PdsState::Vertex start, set<PdsState::Vertex> &seen) {
    auto hasBlankNeighbor = [this] (auto v) {
        return ranges::any_of(m_graph.neighbors(v), [this](auto w) { return isActive(w) || isBlank(w);} );
    };
    bool changed = false;
    seen.insert(start);
    if (m_graph.degree(start) <= 2 && hasBlankNeighbor(start) && isZeroInjection(start) && isBlank(start)) {
        setInactive(start);
        changed = true;
    }
    for (auto w: m_graph.neighbors(start)) {
        if (!seen.contains(w)) {
            changed |= disableLowDegreeRecursive(w, seen);
        }
    }
    return changed;
}

bool PdsState::setBlank(PdsState::Vertex vertex) {
    assert(!isActive(vertex));
    m_active[vertex] = PmuState::Blank;
    return m_observed.size() == m_graph.numVertices();
}

bool PdsState::setActive(PdsState::Vertex vertex) {
    m_active[vertex] = PmuState::Active;
    observe(vertex);
    for (auto w: m_graph.neighbors(vertex)) {
        observe(w);
    }
    return m_observed.size() == m_graph.numVertices();
}

bool PdsState::setInactive(PdsState::Vertex vertex) {
    assert(!isActive(vertex));
    if (!isInactive(vertex)) {
        m_active[vertex] = PmuState::Inactive;
        assert(activeState(vertex) == PmuState::Inactive);
        return true;
    } else {
        return false;
    }
}

bool PdsState::collapseLeaves() {
    bool changed = false;
    auto vertices = m_graph.vertices() | ranges::to<std::vector>();
    for (auto v: vertices) {
        if (m_graph.degree(v) == 1
                && !isActive(v)
                ) {
            Vertex neighbor;
            for (auto w: m_graph.neighbors(v)) {
                neighbor = w;
            }
            if (m_graph.degree(neighbor) == 2 && m_graph[neighbor].zero_injection) {
                if (!isZeroInjection(v)) {
                    m_graph[neighbor].zero_injection = false;
                }
            } else {
                if (m_graph[neighbor].zero_injection) {
                    m_graph[neighbor].zero_injection = false;
                } else {
                    setActive(neighbor);
                }
            }
            removeVertex(v);
            changed = true;
        } else if (m_unobserved_degree.at(v) == 0 && isBlank(v) && isObserved(v)) {
            setInactive(v);
            changed = true;
        }
    }
    return changed;
}

bool PdsState::disableLowDegree() {
    bool changed = false;
    set<PdsState::Vertex> seen;
    for (auto v: m_graph.vertices()) {
        if (m_graph.degree(v) >= 3) {
            changed = disableLowDegreeRecursive(v, seen);
        }
    }
    return changed;
}

bool PdsState::reduceObservedNonZi() {
    bool changed = false;
    auto vertices = m_graph.vertices() | ranges::to<std::vector>();
    for (auto v: vertices) {
        if (isObserved(v) && isInactive(v) && !isZeroInjection(v)) {
            removeVertex(v);
            changed = true;
        }
    }
    return changed;
}

bool PdsState::collapseDegreeTwo() {
    bool changed = false;
    auto vertices = m_graph.vertices() | ranges::to<std::vector>();
    for (auto v: vertices) {
        if (m_graph.degree(v) == 2 && isZeroInjection(v)) {
            std::vector<Vertex> neighbors = m_graph.neighbors(v) | ranges::to<std::vector>();
            auto [x, y] = std::tie(neighbors[0], neighbors[1]); { }
            if (!m_graph.edge(x, y)) {
                if (isInactive(v)) {
                    if((isZeroInjection(x) && m_graph.degree(x) <= 2) || (isZeroInjection(y) && m_graph.degree(y) <= 2)) {
                        addEdge(x, y);
                        removeVertex(v);
                        changed = true;
                    }
                }
                for (auto [s, t]: {std::tie(x, y), std::tie(y, x)}) {
                    if (!isZeroInjection(s) && isInactive(s) && !isZeroInjection(t) && isBlank(t)) {
                        setActive(t);
                        changed = true;
                    }
                }
            } else {
                if (m_graph.degree(x) == 2 && isBlank(y)) {
                    setActive(y);
                    changed = true;
                } else if (m_graph.degree(y) == 2 && isBlank(x)) {
                    setActive(x);
                    changed = true;
                }
            }
        }
    }
    return changed;
}

bool PdsState::disableObservationNeighborhood() {
    bool changed = false;
    map<Vertex, set<Vertex>> cachedNeighborhood;
    set<Vertex> active;
    for (auto v: m_graph.vertices()) {
        if (isActive(v)) active.insert(v);
    }
    auto activeNeighborhood = observationNeighborhood(m_graph, active);
    for (auto v: m_graph.vertices()) {
        if (isBlank(v)) {
            if (isSuperset(activeNeighborhood, m_graph.neighbors(v))) {
                setInactive(v);
                changed = true;
            }
        }
    }
    auto vertices = m_graph.vertices() | ranges::to<std::vector>();
    ranges::sort(vertices, [this](auto left, auto right) -> bool { return m_graph.degree(left) > m_graph.degree(right);});
    for (auto v: vertices) {
        if (isBlank(v)) {
            active.insert(v);
            auto observation = observationNeighborhood(m_graph, active);
            active.erase(v);
            for (auto w: observation) {
                if (v != w && isBlank(w)) {
                    if (isSuperset(observation, m_graph.neighbors(w))) {
                        setInactive(w);
                        changed = true;
                    }
                }
            }
        }
    }
    return changed;
}

bool PdsState::activateNecessaryNodes() {
    bool changed = false;
    set<Vertex> blankActive;
    for (auto v: m_graph.vertices()) {
        if (!isInactive(v)) blankActive.insert(v);
    }
    for (auto v: m_graph.vertices()) {
        if (isBlank(v)) {
            blankActive.erase(v);
            auto observed = observationNeighborhood(m_graph, blankActive);
            if (ranges::any_of(m_graph.vertices(), [&observed](auto v) -> bool { return !observed.contains(v);})) {
                setActive(v);
                changed = true;
            }
            blankActive.insert(v);
        }
    }
    return changed;
}

map<PdsState::Vertex, PdsState::Vertex> findClosestActive(const PdsState& state) {
    using Vertex = PdsState::Vertex;
    std::deque<Vertex> queue;
    map<Vertex, Vertex> closestActive;
    for (auto v: state.graph().vertices()) {
        if (state.isActive(v)) {
            closestActive.emplace(v, v);
            queue.push_back(v);
        }
    }
    while (!queue.empty()) {
        auto v = queue.front();
        queue.pop_front();
        for (auto w: state.graph().neighbors(v)) {
            if (!closestActive.contains(w)) {
                closestActive.emplace(w, closestActive[v]);
                queue.push_back(w);
            }
        }
    }
    return closestActive;
}

bool PdsState::collapseObservedEdges() {
    bool changed = false;
    auto isObservedEdge = [this](PowerGrid::edge_descriptor e) {
        auto [s, t] = m_graph.endpoints(e);
        return isObserved(s) && isObserved(t);
    };
    auto edges = m_graph.edges() | ranges::views::filter(isObservedEdge) | ranges::to<std::vector>();
    if (edges.empty()) return false;
    auto closestActive = findClosestActive(*this);

    for (auto e: edges) {
        auto [s, t] = m_graph.endpoints(e);
        if (s == closestActive.at(t) || t == closestActive.at(s)) continue;
        m_graph.removeEdge(e);
        changed = true;
        auto hasObservedNeighbor = [this](Vertex v) -> bool { return ranges::any_of(m_graph.neighbors(v), [this](auto w) { return isActive(w);});};
        if (!isActive(s)) {
            if (!hasObservedNeighbor(s)) addEdge(s, closestActive.at(s));
        }
        if (!isActive(t)) {
            if (!hasObservedNeighbor(t)) addEdge(t, closestActive.at(t));
        }
    }
    return changed;
}

bool isBlockingVertex(const PdsState& state, PdsState::Vertex vertex) {
    return !state.isZeroInjection(vertex) && state.isObserved(vertex) && state.isInactive(vertex);
}

inline bool isBlockedEdge(const PdsState& state, PdsState::Vertex source, PdsState::Vertex target) {
    return state.isObserved(source) && state.isObserved(target)
        && !state.isActive(source) && !state.isActive(target)
        && !(state.isZeroInjection(source) && state.isZeroInjection(target));
}

void recurseComponent(
        PdsState::Vertex start,
        const PdsState& state,
        set<PdsState::Vertex>& seen,
        set<PdsState::Vertex>& currentComponent,
        bool nonZiSeparators
) {
    if (seen.contains(start)) return;
    seen.insert(start);
    currentComponent.insert(start);
    for (auto w: state.graph().neighbors(start)) {
        if (!state.isActive(w)) {
            if (!seen.contains(w) && (!nonZiSeparators || !isBlockedEdge(state, start, w))) {
                recurseComponent(w, state, seen, currentComponent, nonZiSeparators);
            }
        } else {
            currentComponent.insert(w);
        }
    }
}

bool PdsState::solveTrivial() {
    if (!allObserved()) {
        auto blank_filter = [this] (Vertex v) -> bool { return isBlank(v); };
        auto possibleLocations = m_graph.vertices() | ranges::views::filter(blank_filter) | ranges::to<std::vector>();
        if (possibleLocations.size() == 1) {
            setActive(possibleLocations[0]);
        }
    }
    return allObserved();
}

std::vector<PdsState> PdsState::subproblems(bool nonZiSeparators) const {
    std::vector<PdsState> components;
    set<Vertex> seen;
    for (auto v: m_graph.vertices()) {
        if (!isActive(v) && !seen.contains(v)) {
            set<Vertex> currentComponent;
            recurseComponent(v, *this, seen, currentComponent, nonZiSeparators);
            PowerGrid subgraph{graph()};
            for (auto x: subgraph.vertices()) {
                if (!currentComponent.contains(x)) {
                    subgraph.removeVertex(x);
                }
            }
            auto dummy = subgraph.addVertex();
            auto oneActive = dummy;
            PdsState subproblem(std::move(subgraph));
            for (auto x: subproblem.graph().vertices()) {
                if (x == dummy) continue;
                if (isActive(x)) {
                    subproblem.setActive(x);
                    oneActive = x;
                } else if (isInactive(x)) {
                    subproblem.setInactive(x);
                }
            }
            bool dummyNeeded = false;
            for (auto x: subproblem.graph().vertices()) {
                if (x == dummy) continue;
                if (isObserved(x) && !subproblem.isObserved(x)) {
                    subproblem.addEdge(x, oneActive);
                    dummyNeeded = true;
                }
            }
            subproblem.setActive(oneActive);
            if (oneActive != dummy || !dummyNeeded) {
                subproblem.removeVertex(dummy);
            }
            components.emplace_back(std::move(subproblem));
        }
    }
    return components;
}

void dominate(const PowerGrid &graph, const map<PowerGrid::vertex_descriptor, PmuState> &active, set<PowerGrid::vertex_descriptor> &observed) {
    for (auto v: graph.vertices()) {
        if (active.at(v) == PmuState::Active) {
            observed.insert(v);
            for (auto w: graph.neighbors(v)) {
                observed.insert(w);
            }
        }
    }
}

bool propagate(const PowerGrid &graph, set<PowerGrid::vertex_descriptor> &observed, size_t max_unobserved) {
    pds::map<PowerGrid::vertex_descriptor, size_t> unobserved_degree;
    std::vector<PowerGrid::vertex_descriptor> queue;
    for (const auto& v: graph.vertices()) {
        unobserved_degree[v] = 0;
        for (const auto& w: graph.neighbors(v)) {
            unobserved_degree[v] += !observed.contains(w);
        }
        if (graph[v].zero_injection && observed.contains(v) && unobserved_degree.at(v) > 0 && unobserved_degree.at(v) <= max_unobserved) {
            queue.push_back(v);
        }
    }
    while (!queue.empty()) {
        auto v = queue.back();
        queue.pop_back();
        for (const auto& w: graph.neighbors(v)) {
            if (!observed.contains(w)) {
                observed.insert(w);
                if (graph[w].zero_injection && observed.contains(w) && unobserved_degree.at(w) > 0 && unobserved_degree.at(w) <= max_unobserved) {
                    queue.push_back(w);
                }
                for (const auto& u: graph.neighbors(w)) {
                    unobserved_degree[u] -= 1;
                    auto deg = unobserved_degree.at(u);
                    if (graph[u].zero_injection && observed.contains(u) && deg > 0 && deg == max_unobserved) {
                        queue.push_back(u);
                    }
                }
            }
        }
    }
    return true;
}

bool observed(const PowerGrid &graph, const set<PowerGrid::vertex_descriptor> &observed) {
    return ranges::all_of(graph.vertices(), [&] (const auto& v) {
        return observed.contains(v);
    });
}

}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API