https://github.com/cran/bayestestR
Raw File
Tip revision: c349b1125b413a50f124f780f408b9e3f7167af3 authored by Dominique Makowski on 24 July 2024, 14:10:02 UTC
version 0.14.0
Tip revision: c349b11
describe_prior.Rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/describe_prior.R
\name{describe_prior}
\alias{describe_prior}
\alias{describe_prior.brmsfit}
\title{Describe Priors}
\usage{
describe_prior(model, ...)

\method{describe_prior}{brmsfit}(
  model,
  effects = c("fixed", "random", "all"),
  component = c("conditional", "zi", "zero_inflated", "all", "location",
    "distributional", "auxiliary"),
  parameters = NULL,
  ...
)
}
\arguments{
\item{model}{A Bayesian model.}

\item{...}{Currently not used.}

\item{effects}{Should results for fixed effects, random effects or both be
returned? Only applies to mixed models. May be abbreviated.}

\item{component}{Should results for all parameters, parameters for the
conditional model or the zero-inflated part of the model be returned? May
be abbreviated. Only applies to \pkg{brms}-models.}

\item{parameters}{Regular expression pattern that describes the parameters
that should be returned. Meta-parameters (like \code{lp__} or \code{prior_}) are
filtered by default, so only parameters that typically appear in the
\code{summary()} are returned. Use \code{parameters} to select specific parameters
for the output.}
}
\description{
Returns a summary of the priors used in the model.
}
\examples{
\donttest{
library(bayestestR)

# rstanarm models
# -----------------------------------------------
if (require("rstanarm")) {
  model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
  describe_prior(model)
}

# brms models
# -----------------------------------------------
if (require("brms")) {
  model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
  describe_prior(model)
}

# BayesFactor objects
# -----------------------------------------------
if (require("BayesFactor")) {
  bf <- ttestBF(x = rnorm(100, 1, 1))
  describe_prior(bf)
}
}
}
back to top