Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 711c3b2
  • /
  • src
  • /
  • technical
  • /
  • additive.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:63085683db7bc44c8ffca7e2b497c369a45cdab4
directory badge Iframe embedding
swh:1:dir:7696d39678e6db4ba664281c8ef17262a2d18a13
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
additive.md
```@meta
CurrentModule = DataEnvelopmentAnalysis
```

# Additive Models

## Weighted Additive Model

The additive model measures technical efficiency based solely on input excesses and output shortfalls, and characterizes efficiency in terms of the input and output slacks: ``\mathbf{s}^-\mathbb{\in R}^m`` and ``\mathbf{s}^+$$\mathbb{\in R}^s``, respectively.
. The package implements the weighted additive formulation of *Cooper and Pastor (1995)* and *Pastor, Lovell and Aparicio (2011)*, whose associated linear program is:
```math
\begin{aligned}
  & \underset{\mathbf{\lambda },\,{{\mathbf{s}}^{-}},\,{{\mathbf{s}}^{+}}}{\mathop{\max }}\,\quad \quad \quad \quad \omega =\mathbf{\rho_{x}^{-}}{{\mathbf{s}}^{\mathbf{-}}}+\mathbf{\rho_{y}^{+}}{{\mathbf{s}}^{+}} \\
 & \text{subject}\ \text{to} \\
 & \quad \quad \quad \quad \quad \quad X\mathbf{\lambda }+{{\mathbf{s}}^{\mathbf{-}}}= \ {{\mathbf{x}}_{o}} \\
 & \quad \quad \quad \quad \quad \quad Y\mathbf{\lambda }-{{\mathbf{s}}^{+}}=\ {{\mathbf{y}}_{o}} \\
 & \quad \quad \quad \quad \quad \quad \mathbf{e\lambda=1} \\
 & \quad \quad \quad \quad \quad \quad \mathbf{\lambda }\ge \mathbf{0},\ {{\mathbf{s}}^{\mathbf{-}}}\ge 0,{{\mathbf{s}}^{+}}\ge 0, 
\end{aligned}
```

where ``(\mathbf{\rho_{x}^{-}, \mathbf{\rho_{y}^{+}}}) \mathbb{\in R}^m_{+}\times \mathbb{R}_+^{s}`` are the inputs and outputs weight vectors whose elements can vary across DMUs.

In this example we compute the additive DEA model with all weights equal to one:
```@example additive
using DataEnvelopmentAnalysis

X = [5 13; 16 12; 16 26; 17 15; 18 14; 23 6; 25 10; 27 22; 37 14; 42 25; 5 17];

Y = [12; 14; 25; 26; 8; 9; 27; 30; 31; 26; 12];

deaadd(X, Y)
```

The same model is computed with:
```@example additive
deaadd(X, Y, :Ones)
```

The additive DEA model can be computed under constant returns to scale setting the
`rts` parameter to `:CRS`:
```@example additive
deaadd(X, Y, :Ones, rts = :CRS)
```

The package can compute a wide class of different DEA models known as general  efficiency measures (GEMs):
- The measure of inefficiency proportions (MIP).
- The normalized weighted additive DEA model.
- The range adjusted measure (RAM).
- The bounded adjusted  measure (BAM).

## Measure of Inefficiency Proportions (MIP)

The measure of inefficiency proportions (MIP), *Charnes et al. (1987)* and *Cooper et al. (1999)*, use the weights:
```math
(\mathbf{\rho_{x}^{-}, \mathbf{\rho_{y}^{+}}})=(1/{\mathbf{x}}_{o},1/{{\mathbf{y}}_{o}})
```
```@example additive
deaadd(X, Y, :MIP)
```

## Normalized Weighted Additive Model

The normalized weighted additive DEA model, *Lovell and Pastor (1995)*, use the weights:
```math
(\mathbf{\rho_{x}^{-}, \mathbf{\rho_{y}^{+}}})=(1/{\mathbf{σ^-}},1/{{\mathbf{σ^+}}})
```
where ``\mathbf{σ^-}``and ``\mathbf{σ^+}`` are the standard deviations of inputs and outputs respectively.
```@example additive
deaadd(X, Y, :Normalized)
```

## Range Adjusted Measure (RAM)

The range adjusted measure (RAM), *Cooper et al. (1999)*, use the weights::
```math
(\mathbf{\rho^{-}, \mathbf{\rho^{+}}})=(1/(m+s)R^-,(1/(m+s)R^+)
```
where ``R^-``and ``R^+``are the inputs and outputs variables' ranges.
```@example additive
deaadd(X, Y, :RAM)
```

## Bounded Adjusted  Measure (BAM)
The bounded adjusted  measure (BAM), *Cooper et al. (2011)*, use the weights:::
```math
(\mathbf{\rho_{x}^{-}, \mathbf{\rho_{y}^{+}}})=(1/(m+s)({\mathbf{x}}_{o}-{\mathbf{\underline{x}}}),(1/(m+s)({\mathbf{\overline{y}}} - {\mathbf{y}}_{o})
```
where ``\mathbf{\underline{x}}`` and ``\mathbf{\overline{y}}`` are the minimum and maximum observed values of inputs and outputs respectively.
```@example additive
deaadd(X, Y, :BAM)
```

### deaadd Function Documentation

```@docs
deaadd
```

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top