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Abstract

We introduce computational network (CN), a unified framework for describ-
ing arbitrary learning machines, such as deep neural networks (DNNs), con-
volutional neural networks (CNNs), recurrent neural networks (RNNs), long
short term memory (LSTM), logistic regression, and maximum entropy model,
that can be illustrated as a series of computational steps. A CN is a directed
graph in which each leaf node represents an input value or a parameter and
each non-leaf node represents a matrix operation upon its children. We de-
scribe algorithms to carry out forward computation and gradient calculation
in CN and introduce most popular computation node types used in a typical
CN.

We further introduce the computational network toolkit (CNTK), an imple-
mentation of CN that supports both GPU and CPU. We describe the archi-
tecture and the key components of the CNTK, the command line options to
use CNTK, and the network definition and model editing language, and pro-
vide sample setups for acoustic model, language model, and spoken language
understanding. We also describe the Argon speech recognition decoder as an
example to integrate with CNTK.
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Chapter 1

Introduction

1.1 Overview

The Computational Network Toolkit (CNTK) is a software package that makes
it easy to design and test computational networks such as deep neural networks.
A computational network is a style of computation where data flows through a
graph and computations happen in the nodes of the graph. The goal of a compu-
tational network is to take feature data, transform the data through a network of
simple computations, and then produce one or more outputs. The output is of-
ten some sort of decision based on the input features. A computational network
can take many forms such as feed-forward, recursive or convolutional and in-
cludes various forms of computations and non-linearities. The network’s parame-
ters are optimized to produce the “best” possible outcome for a given set of data
and an optimization criteria.

In this chapter we can only give readers a taste for CNTK, and specific features
are described in more detail later. With this purpose, CNTK has 5 primary features:

• CNTK is a general solution for training and testing many kinds of neural
networks

• A user specifies a network using a simple text configuration file. The con-
figuration file specifies the type of network, where to find the input data, and
how to optimize the parameters. All of these design parameters are fixed in
the configuration file.

• CNTK is designed to seamlessly put as many of the computations onto a
GPU, if available, as possible. These types of computational networks are
easy to vectorize and fit nicely onto GPUs. CNTK is compatible with GPUs
that support the CUDA programming environment.

8
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• CNTK automatically calculates the needed derivatives in order to efficiently
perform the necessary optimizations. Networks are composed of many sim-
ple elements, and CNTK can keep track of the details to insure that the opti-
mization is done correctly.

• CNTK can be extended by adding small amounts of C++ code to implement
the necessary blocks. New data readers, non-linearities, and objective func-
tions are easy to add.

Consider the work needed to build a non-standard neural network such as the vari-
able parameter DNN [1]. Conventionally, one needs to design the network, derive
the derivatives needed to optimize the network, implement the algorithm, and then
run the experiments. These steps are error prone and time consuming. With CNTK,
however in many cases, you only need to write a simple configuration file. The rest
of this chapter describes the configuration file needed to implement two simple
examples.

The purpose of this documentation is to describe how to use CNTK for your
own experiments. The bulk of this documentation describes the definition and
mathematics of computational networks (Chapter 2), how to run and configure
CNTK (Chapter 3), how to design networks and edit the models (Chapter 4), and
how to extend CNTK (Chapter 5). Chapter 6 describes a modern speech decoder
known as Argon, and Chapter 7 describes a number of CNTK examples. But first
we start with a couple of simple examples to show the basics of CNTK.

1.2 A Simple Demo

We used a simple Matlab script (included in the distribution) to generate two-
dimensional data with binary labels. The raw data is shown below in Figure 1.1.
This data was stored as a text file, one sample per line, that can be read by the
UCIFastReader method (Section 3.4.1) in CNTK.

The following configuration file tells CNTK how to process this data. There
are three sections of this file:

• The preamble specifies which command blocks to run (Simple_Demo), which
GPU to use, and how to log CNTK’s output.

• The Simple_Demo block specifies one action for CNTK. The start of the
block specifies the action to take (train) but more importantly specifies the
actions needed to train the desired network. This block specifies three com-
ponents in order to train a new network:
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Figure 1.1: A simple test set to demonstrate the power and ease of CNTK.

– The SimpleNetworkBuilder block specifies the topology of the net-
work, how to initialize the network, and how to evaluate its perfor-
mance (cross-entry with softmax in this case).

– The SGD (Stochastic Gradient Descent) block tells CNTK how to opti-
mize the network to find the best parameters. This includes information
about miniblock size (so the computation is more efficient), the learn-
ing rate, and how many epochs to train.

– The reader block specifies from where to read the input data, how the
features and labels are formatted, and how to randomize the order the
data is applied to the network during training

• Finally, the Simple_Demo_Output block specifies how to test the network.
Again we must specify the source of the data (we are training and testing on
the same data to keep the example small) and how to evaluate the results.
CNTK write the value of the two output nodes, for each test case, into a text
file.

The entire script is shown below.

# command=Simple_Demo_Output
command=Simple_Demo:Simple_Demo_Output
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# deviceId=-1 or "CPU" for CPU, >=0 for GPU devices
DeviceNumber=0
stderr="Demo"
precision="float"
modelPath="models/simple.dnn"
deviceId=$DeviceNumber$
outputNodeNames=ScaledLogLikelihood
traceLevel=1
#######################################
# TRAINING CONFIG (Simple, Fixed LR) #
#######################################
Simple_Demo=[

action="train"
# Notation xxx:yyy*n:zzz is equivalent to xxx,
# then yyy repeated n times, then zzz
# example: 10:20*3:5 is equivalent to 10:20:20:20:5
SimpleNetworkBuilder = [

# 2 input, 2 50-element hidden, 2 output
layerSizes=2:50*2:2
trainingCriterion="CrossEntropyWithSoftmax"
evalCriterion="ErrorPrediction"
layerTypes="Sigmoid"
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true

]
SGD = [

# epochSize=0 means epochSize is the size of
# the training set. Must be evenly divisible
# into number of data frames.
epochSize=0
minibatchSize=25
learningRatesPerMB=0.5:0.2*20:0.1
momentumPerMB=0.9
dropoutRate=0.0
maxEpochs=500

]
# Parameter values for the reader
reader = [
# reader to use
readerType="UCIFastReader"
file="SimpleDataTrain.txt"
miniBatchMode="partial"
randomize=Auto
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verbosity=1
features=[

dim=2 # two-dimensional input data
start=0 # Start with first element on line

]
labels=[
start=2 # Skip two elements
dim=1 # One label dimension
labelDim=2 # Two labels possible
labelMappingFile="SimpleMapping.txt"

]
]

]
#######################################
# OUTPUT RESUTLS (Simple) #
#######################################
Simple_Demo_Output=[

action="write"
# Parameter values for the reader
reader=[
# reader to use
readerType="UCIFastReader"
file="SimpleDataTest.txt"
features=[

dim=2
start=0

]
labels=[
start=2
dim=1
labelDim=2
labelMappingFile="SimpleMapping.txt"

]
]
outputPath="SimpleOutput" # Dump output as text

]

You can run this script using the following command on Windows

cntk configFile=Simple.config

or under Linux

cntk configFile=Simple.config

This CNTK job trains a feedforward network with 2-dimensional input (x and
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Figure 1.2: Trained output values over the region of interest for the first (of two)
output neurons. The dashed line shows the position where the output is zero (the
decision boundary).

y coordinates), and two hidden layers with 50 units each, and then with two output
units (one for each decision). CNTK uses cross entropy with softmax to measure
and optimize the network’s performance.

Figure 1.2 shows the optimized output (before the sigmoid) of one of the two
output nodes.

The output neuron successfully captures the shape of the decision boundary.
The network’s error rate, shown in Figure 1.3, over time is interesting.

On a 2.2GHz Xeon processor with a low-end Quadro 4000 GPU, the training
and testing take 11 minutes 9 seconds (it is this long because the model size and
minibatch size are both small, and the GPU is more efficient with larger amounts
of data).

1.3 A Speech Demo (TIMIT)

A second example shows how to use CNTK to do a simple speech experiment. We
use the LDC’s TIMIT speech database as training and testing data. While this data
is not free, it is relatively common and illustrates a real speech task. The data is
available at https://catalog.ldc.upenn.edu/LDC93S1.
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Figure 1.3: Training error rate vs. epoch number for the simple demo. The network
quickly converges to a solution that gets most of the data correct, before finding the
non-linearity that allows it to track the “bumps” in the decision boundary.

There are three steps in using TIMIT with CNTK: prepare the data, train the
network, and finally test the network’s performance. We will describe each step in
turn. We provide a (cygwin) shell script to perform the necessary actions, but the
necessary steps can easily be replicated with other shells.

The first step is to prepare the data using HTK (Hidden Markov Toolkit). This
involves creating a list of files (the HTK script) and then passing this script to
HTK’s HCopy program, which calculates the filterbank features we use in our ex-
periment. Not all the files in TIMIT are usable, so we start with a list of valid
subjects (the text file TimitSubjects.txt). A python script uses this list of sub-
jects, prepends the directory where the TIMIT distribution is found, and creates
two script files. The first script file is used by HCopy to tell it where to read each
audio file (in NIST’s wave format, which is different from Microsoft’s wave for-
mat) and where to put the output (in a directory called features.) We also take this
opportunity to change the directory structure so the output feature files (___.zda)
are stored in a flat directory called Features. The second script file is used as input
to CNTK and tells CNTK where to find each input file, already processed into fea-
tures. If you do not have python, or you prefer, you can also edit these two included
.scp files by hand so each line contains the directory where your data is stored.
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Figure 1.4: (Square root of the) phone confusion matrices after 1 (left) and 100
(right) epochs. To highlight the off-diagonal terms in these figures, we are display-
ing the square root of all the matrix elements. The single bright yellow off-diagonal
pixel in the epoch 1 result corresponds to phones that are supposed to be “pau” (si-
lence) but are confused with “h#” (the beginning/end of the word.).

The second step is to use HTK’s HCopy program to compute the necessary
speech features. In this study the features are 24-dimensional filterbank features,
plus delta and delta-delta features, and the results are stored in the Features/ direc-
tory. The original TIMIT database is supplied in multiple directories and subdirec-
tories, but we’ve flattened the directory structure to make later processing easier.
(No extra directories to create.)

The third and final step is to use CNTK to compute a model that predicts the
correct tri-phone label. The neural network has 792 input nodes, 3 hidden layers
with 512 nodes each, and 183 output nodes.

Input: The number of input nodes in the network divided by the dimensionality
of the HTK feature vector determines the width of the context window. In
this case 11 frames are used as input to the network.

Output: The TIMIT data is labeled with 61 different phonemes, and the network
is trained to recognize tri-phones. Thus there are 61x3=183 output nodes.

We use a couple of Matlab scripts to analyze the output data and compute the phone
confusion matrix. Figure 1.4 shows the confusion matrices after 1 and 100 epochs.
As expected, there is much less energy in the off-diagonal terms as the number of
epochs grows. This is also shown in Figure 1.5 which shows the training error rate
calculated after each epoch.
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Figure 1.5: Training error rate as a function of epoch number for the TIMIT speech
example.

On a 2.2GHz Xeon processor the training takes 167 minutes without a GPU,
and 61 minutes with a low-end Quadro 4000 GPU.



Chapter 2

Computational Network

2.1 Computational Network

There is a common property in key machine learning models, such as deep neural
networks (DNNs) [2, 3, 4, 5, 6, 7], convolutional neural networks (CNNs) [8, 9,
10, 11, 12, 13, 14, 15, 16, 17], and recurrent neural networks (RNNs) [18, 19,
20, 21, 22]. All these models can be described as a series of computational steps.
For example, a one-hidden-layer sigmoid neural network can be described as the
computational steps listed in Algorithm 2.1. If we know how to compute each step
and in which order the steps are computed we have an implementation of the neural
network. This observation suggests that we can unify all these models under the
framework of computational network (CN), part of which has been implemented
in toolkits such as Theano [23], CNTK [24] and RASR/NN [25]..

Algorithm 2.1 Computational Steps Involved in an One-Hidden-Layer Sigmoid
Neural Network

1: procedure ONEHIDDENLAYERNNCOMPUTATION(X)
. Each column of X is an observation vector

2: T(1) ←W(1)X
3: P(1) ← T(1) +B(1) . Each column of B(1) is the bias b(1)

4: S(1) ← σ
(
P(1)

)
. σ (.) is the sigmoid function applied element-wise

5: T(2) ←W(2)S(1)

6: P(2) ← T(2) +B(2) . Each column of B(2) is the bias b(2)

7: O← softmax
(
P(2)

)
. Apply softmax column-wise to get output O

8: end procedure

A computational network is a directed graph {V,E}, where V is a set of ver-
tices and E is a set of directed edges. Each vertex, called a computation node,

17
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Figure 2.1: Represent the one-hidden-layer sigmoid neural network of Algorithm
2.1 with a computational network

represents a computation. Vertices with edges toward a computation node are the
operands of the associated computation and sometimes called the children of the
computation node. Here the order of operands matters for some operations such
as matrix multiplication. Leaf nodes do not have children and are used to repre-
sent input values or model parameters that are not result of some computation. A
CN can be easily represented as a set of computation nodes n and their children
{n : c1, · · · , cKn}, where Kn is the number of children of node n. For leaf nodes
Kn = 0. Each computation node knows how to compute the value of itself given
the input operands (children).

Figure 2.1 is the one-hidden-layer sigmoid neural network of Algorithm 2.1
represented as a CN in which each node n is identified by a {nodename : operatortype}
pair and takes its ordered children as the operator’s inputs. From the figure, we can
observe that in CN there is no concept of layers. Instead, a computation node is the
basic element of operations. This makes the description of a simple model such
as DNN more cumbersome, but this can be alleviated by grouping computation
nodes together with macros. In return, CN provides us with greater flexibility in
describing arbitrary networks and allows us to build almost all models we are in-
terested in within the same unified framework. For example, we can easily modify
the network illustrated in Figure 2.1 to use rectified linear unit instead of a sigmoid
nonlinearity. We can also build a network that has two input nodes as shown in
Figure 2.2 or a network with shared model parameters as shown in Figure 2.3.
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Figure 2.2: A computational network with two input nodes (highlighted).

Figure 2.3: A computational network with shared model parameters (highlighted).
Here we assume the input X, hidden layer S(1), and output layer O have the same
dimension.
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2.2 Forward Computation

When the model parameters (i.e., weight nodes in Figure 2.1) are known, we can
compute the value of any node given the new input values. Unlike in the DNN case,
where the computation order can be trivially determined as layer-by-layer compu-
tation from bottom up, in CN different network structure comes with a different
computation order. When the CN is a directed acyclic graph (DAG) the computa-
tion order can be determined with a depth-first traverse over the DAG. Note that in
a DAG there is no directed cycles (i.e., no recurrent loop). However, there might
be loops if we don’t consider edge directions, for which Figure 2.3 is an example.
This is because the same computation node may be a child of several other nodes.
Algorithm 2.2. determines the computation order of a DAG and takes care of this
condition. Once the order is decided, it will remain the same for all the subsequent
runs, regardless of the computational environment. In other words, this algorithm
only needs to be executed per output node and then cache the computation order.
Following the order determined by Algorithm 2.2, the forward computation of the
CN is carried out synchronously. The computation of the next node starts only after
the computation of the previous node has finished. It is suitable for environments
where single computing device, such as one GPGPU or one CPU host, is used, or
the CN itself is inherently sequential, e.g., when the CN represents a DNN.

Algorithm 2.2 Synchronous forward computation of a CN. The computation order
is determined by a depth-first traverse over the DAG.

1: procedure DECIDEFORWARDCOMPUTATIONORDER(root, visited, order)
. Enumerate nodes in the DAG in the depth-first order.

. visited is initialized as an empty set. order is initialized as an empty
queue

2: if root /∈ visited then . the same node may be a child of several nodes.
3: visited← visited ∪ root
4: for each c ∈ root.children do . apply to children recursively
5: call DECIDEFORWARDCOMPUTATIONORDER(c, visited, order)
6: end for
7: order ← order + root . Add root to the end of order
8: end if
9: end procedure

The forward computation can also be carried out asynchronously with which
the order of the computation is determined dynamically. This can be helpful when
the CN has many parallel branches and there are more than one computing device
to compute these branches in parallel. Algorithm 2.3 shows an algorithm that car-
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ries out the forward computation of a CN asynchronously. In this algorithm, all
the nodes whose children have not been computed are in the waiting set and those
whose children are computed are in the ready set. At the beginning, all non-leaf
descendents of root are in the waiting set and all leaf descendents are in the ready
set. The scheduler picks a node from the ready set based on some policy, removes
it from the ready set, and dispatches it for computation. Popular policies include
first-come/first-serve, shortest task first, and least data movement. When the com-
putation of the node finishes, the system calls the SIGNALCOMPLETE method to
signal to all its parent nodes. If all the children of a node have been computed,
the node is moved from the waiting set to the ready set. The algorithm stops when
all nodes are computed. Although not explicitly indicated in the Algorithm 2.3,
the SIGNALCOMPLETE procedure is called under concurrent threads and should
be guarded for thread safety. This algorithm can be exploited to carry out compu-
tation on any DAG instead of just a CN.

Algorithm 2.3 Asynchronous forward computation of a CN. A node is moved to
the ready set when all its children have been computed. A scheduler monitors the
ready set and decides where to compute each node in the set.

1: procedure SIGNALCOMPLETE(node, waiting, ready)
. Called when the computation of the node is finished. Needs to be

thread safe.
. waiting is initialized to include all non-leaf descendents of root.

. ready is initialized to include all leaf descendents of root.
2: for each p ∈ node.parents ∧ p ∈ waiting do
3: p.numFinishedChildren++
4: if p.numFinishedChildren == p.numChildren then

. all children have been computed
5: waiting ← waiting − node
6: ready ← ready ∪ node
7: end if
8: end for
9: end procedure

10: procedure SCHEDULECOMPUTATION(ready)
. Called by the job scheduler when a new node is ready or computation

resource is available.
11: pick node ∈ ready according to some policy
12: ready ← ready − node
13: dispatch node for computation.
14: end procedure
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In many cases, we may need to compute the value for a node with changing
input values. To avoid duplicate computation of shared branches, we can add a
time stamp to each node and only recompute the value of the node if at least one
of the children has newer value. This can be easily implemented by updating the
time stamp whenever a new value is provided or computed, and by excluding nodes
whose children is older from the actual computation.

In both Algorithms 2.2 and 2.3 each computation node needs to know how
to compute its value when the operands are known. The computation can be as
simple as matrix summation or element-wise application of sigmoid function or
as complex as whatever it may be. We will describes the evaluation functions for
popular computation node types in Section 2.4.

2.3 Model Training

To train a CN, we need to define a training criterion J . Popular criteria include
cross-entropy (CE) for classification and mean square error (MSE) for regression.
Since the training criterion is also a result of some computation, it can be repre-
sented as a computation node and inserted into the CN. Figure 2.4 illustrates a CN
that represents an one-hidden-layer sigmoid neural network augmented with a CE
training criterion node. If the training criterion contains regularization terms the
regularization terms can also be implemented as computation nodes and the final
training criterion node is a weighted sum of the main criterion and the regulariza-
tion term.

The model parameters in a CN can be optimized over a training set
S = {(xm,ym) |0 ≤ m < M} using the minibatch based backpropagation (BP)
algorithm. More specifically, we improve the model parameter W at each step
t+ 1 as

Wt+1 ←Wt − ε4Wt, (2.1)

where

4Wt =
1

Mb

Mb∑
m=1

∇WtJ (W;xm,ym) , (2.2)

andMb is the minibatch size. The key here is the computation of∇WtJ (W;xm,ym)
which we will simplify as∇JW. Since a CN can have arbitrary structure, we cannot
use the exact same BP algorithm described in Algorithm ?? to compute∇JW.

A naive solution to compute ∇JW is illustrated in Figure 2.5, in which W(1)

and W(2) are model parameters. In this solution, each edge is associated with a
partial derivative, and
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Figure 2.4: The one-hidden-layer sigmoid neural network augmented with a cross
entropy training criterion node J and a label node L.

∇J
W(1) =

∂J

∂V(1)

∂V(1)

∂V(2)

∂V(2)

∂W(1)
+

∂J

∂V(3)

∂V(3)

∂V(4)

∂V(4)

∂W(1)
(2.3)

∇J
W(2) =

∂J

∂V(1)

∂V(1)

∂V(2)

∂V(2)

∂W(2)
. (2.4)

This solution comes with two major drawbacks. First, each derivative can
have very high dimension. If V ∈ RN1×N2 and W ∈ RN3×N4 then ∂V

∂W ∈
R(N1×N2)×(N3×N4). This means a large amount of memory is needed to keep
the derivatives. Second, there are many duplicated computations. For exam-
ple, ∂J

∂V(1)
∂V(1)

∂V(2) is computed twice in this example, once for ∇J
W(1) and once for

∇J
W(2) .

Fortunately, there is a much simpler and more efficient approach to compute
the gradient as illustrated in Figure 2.6. In this approach, each node n keeps
two values: the evaluation (forward computation) result Vn and the gradient ∇Jn
. Note that the training criterion J is always a scalar, If Vn ∈ RN1×N2 then
∇Jn ∈ RN1×N2 . This requires significantly less memory than that required in the
naive solution illustrated in Figure 2.5. This approach also allows for factoriz-
ing out the common prefix terms and making computation linear in the number
of nodes in the graph. For example, ∂J

∂V(2) is computed only once and used twice
when computing ∂J

∂W(1) and ∂J
∂W(2) with this approach. This is analogous to com-
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Figure 2.5: The naive gradient computation in CN. W(1) and W(2) are model
parameters and each edge is associated with a partial derivative.

Figure 2.6: An efficient gradient computation algorithm in CN. W(1) and W(2)

are model parameters. Each node n stores both the value of the node υn and the
gradient∇Jn .

mon subexpression elimination in a conventional expression graph, only here the
common subexpressions are the parents of the nodes, rather than the children.

Automatic differentiation has been an active research area for decades and
many techniques have been proposed ( [26]). A simple recursive algorithm for
deciding the gradient computation order so that the gradient computation can be
efficiently carried out is shown in Algorithm 2.4 to which a similar recursive algo-
rithm for scalar functions has been provided [27, 28]. This algorithm assumes that
each node has a ComputePartialGradient(child) function which computes the
gradient of the training criterion with regard to the node’s child child and is called
in the order that is decided by the algorithm. Before the algorithm is computed,
the gradient ∇Jn at each node n is set to 0, the queue order is set to empty, and
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parentsLeft is set to the number of parents of each node. This function is then
called on a criterion node that evaluates to a scalar. Similar to the forward compu-
tation, an asynchronous algorithm can be derived. Once the gradient is known, the
minibatch based stochastic gradient descent (SGD) algorithm and other training
algorithms that depend on gradient only can be used to train the model.

Alternatively, the gradients can be computed by following the reverse order of
the forward computation and calling each node’s parents’ ComputePartialGradient(child)
function and passing itself as the child argument. This approach, however, requires
additional book keeping, e.g., keeping pointers to a node’s parents which can in-
troduce additional overhead when manipulating the network architecture.

Algorithm 2.4 Reverse automatic gradient computation algorithm. At the top level
node must be a training criterion node that evaluates to a scalar.

1: procedure DECIDEGRADIENTCOMPUTATIONORDER(node, parentsLeft,
order)

. Decide the order to compute the gradient at all descendents of node.
. parentsLeft is initialized to the number of parents of each node.

. order is initialized to an empty queue.
2: if IsNotLeaf(node) then
3: parentsLeft[node]−−
4: if parentsLeft[node] == 0 ∧ node /∈ order then . All parents have

been computed.
5: order ← order + node . Add node to the end of order
6: for each c ∈ node.children do
7: call DECIDEGRADIENTCOMPUTATIONORDER(c,
parentsLeft, order)

8: end for
9: end if

10: end if
11: end procedure

In many cases, not all the gradients need to be computed. For example, the
gradient with regard to the input value is never needed. When adapting the model,
some of the model parameters don’t need to be updated and thus it is unnecessary to
compute the gradients with regard to these parameters. We can reduce the gradient
computation by keeping a needGradient flag for each node. Once the flags of leaf
nodes (either input values or model parameters) are known, the flags of the non-
leaf nodes can be determined using Algorithm 2.5, which is essentially a depth-first
traversal over the DAG. Since both Algorithms 2.2 and 2.5 are essentially depth-
first traversal over the DAG and both only need to be executed once they may be
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combined in one function.

Algorithm 2.5 Update the needGradient flag recursively.
1: procedure UPDATENEEDGRADIENTFLAG(root, visited)

. Enumerate nodes in the DAG in the depth-first order.
. visited is initialized as an empty set.

2: if root /∈ visited then . The same node may be a child of several nodes
and revisited.

3: visited← visited ∪ root
4: for each c ∈ root.children do
5: call UPDATENEEDGRADIENTFLAG(c, visited, order)
6: if IsNotLeaf(node) then
7: if node.AnyChildNeedGradient() then
8: node.needGradient← true
9: else

10: node.needGradient← false
11: end if
12: end if
13: end for
14: end if
15: end procedure

Since every instantiation of a CN is task dependent and different, it is critical
to have a way to check and verify the gradients computed automatically. A simple
technique to estimate the gradient numerically is:

∂J

∂wij
≈ J (wij + ε)− J (wij − ε)

2ε
, (2.5)

where wij is the (i, j)-th element of a model parameter W, ε is a small constant
typically set to 10−4, and J (wij + ε) and J (wij − ε) are the objective function
values evaluated with all other parameters fixed and wij changed to wij + ε and
wij − ε, respectively. In most cases the numerically estimated gradient and the
gradient computed from the automatic gradient computation agree to at least 4
significant digits if double precision computation is used. Note that this technique
works well with a large range of ε values, except extremely small values such as
10−20 which would lead to numerical roundoff errors.
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2.4 Typical Computation Nodes

For the forward computation and gradient calculation algorithms described above
to work we assume that each type of computation node implements a function
Evaluate to evaluate the value of the node given the values of its child nodes,
and the function ComputePartialGradient(child) to compute the gradient of
the training criterion with regard to the child node child given the node value Vn

and the gradient ∇Jn of the node n and values of all its child nodes. For simplicity
we will remove the subscript in the following discussion.

In this section we introduce the most widely used computation node types and
the corresponding Evaluate and ComputePartialGradient(child) functions.
In the following discussion we use symbols listed in Table 2.1 to describe the com-
putations. We treat each minibatch of input values as a matrix in which each col-
umn is a sample. In all the derivations of the gradients we use the identity

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

, (2.6)

where υmn is the (m,n)-th element of the matrix V, and xij is the (i, j)-th element
of matrix X.

2.4.1 Computation Node Types with No Operand

The values of a computation node that has no operand are given instead of com-
puted. As a result both Evaluate and ComputePartialGradient(child) func-
tions for these computation node types are empty.

• Parameter: Used to represent model parameters that need to be saved as part
of the model.

• InputValue: used to represent features, labels, or control parameters that are
provided by users at run time.

2.4.2 Computation Node Types with One Operand

In these computation node types,Evaluate = V (X) andComputePartialGradient(X) =
∇JX
• Negate: reverse the sign of each element in the operand X.

V (X) ← −X (2.7)

∇JX ← ∇JX −∇J
n. (2.8)
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Symbols Description
λ a scalar
d column vector that represents the diagonal of a square matrix
X matrix of the first operand
Y matrix of the second operand
V value of current node

∇Jn (or∇JV) gradient of the current node
∇JX gradient of the child node (operand) X
∇JY gradient of the child node (operand) Y
• element-wise product
� element-wise division
◦ inner product of vectors applied on matrices column-wise
} inner product applied to each row
δ (.) Kronecker delta
1m,n an m× n matrix with all 1’s
Xα element-wise power

vec (X) vector formed by concatenating columns of X

Table 2.1: Symbols used in describing the computation nodes

The gradient can be derived by observing

∂υmn
∂xij

=

{
−1 m = i ∧ n = j

0 else
(2.9)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

= − ∂J

∂υij
. (2.10)

• Sigmoid: apply the sigmoid function element-wise to the operand X.

V (X) ← 1

1 + e−X
(2.11)

∇JX ← ∇JX +∇J
n • [V • (1− V )] . (2.12)

The gradient can be derived by observing

∂υmn
∂xij

=

{
υij (1− υij) m = i ∧ n = j

0 else
(2.13)
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and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∂J

∂υij
υij (1− υij) . (2.14)

• Tanh: apply the tanh function element-wise to the operand X.

V (X) ← eX − e−X

eX + e−X
(2.15)

∇JX ← ∇JX +∇J
n • (1− V • V ) . (2.16)

The gradient can be derived by observing

∂υmn
∂xij

=

{
1− υ2ij m = i ∧ n = j

0 else
(2.17)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∂J

∂υij

(
1− υ2ij

)
(2.18)

• ReLU: apply the rectified linear operation element-wise to the operand X.

V (X) ← max (0,X) (2.19)

∇JX ← ∇JX +∇J
n • δ (X > 0) . (2.20)

The gradient can be derived by observing

∂υmn
∂xij

=

{
δ (xij > 0) m = i ∧ n = j

0 else
(2.21)

we have

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∂J

∂υij
δ (xij > 0) . (2.22)

• Log: apply the log function element-wise to the operand X.
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V (X) ← log (X) (2.23)

∇JX ← ∇JX +∇J
n •

1

X
. (2.24)

The gradient can be derived by observing

∂υmn
∂xij

=

{
1
xij

m = i ∧ n = j

0 else
(2.25)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∂J

∂υij

1

xij
. (2.26)

• Exp: apply the exponent function element-wise to the operand X.

V (X) ← exp (X) (2.27)

∇JX ← ∇JX +∇J
n • V . (2.28)

The gradient can be derived by observing

∂υmn
∂xij

=

{
υij m = i ∧ n = j

0 else
(2.29)

we have

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∂J

∂υij
υij . (2.30)

• Softmax: apply the softmax function column-wise to the operand X. Each
column is treated as a separate sample.

mj (X) ← max
i
xij (2.31)

eij (X) ← e
xij−mj(X) (2.32)

sj (X) ←
∑
i

eij (X) (2.33)

υij (X) ← eij (X)

sj (X)
(2.34)

∇JX ← ∇JX +
[
∇J

n −∇J
n ◦ V

]
• V . (2.35)
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The gradient can be derived by observing

∂υmn
∂xij

=


υij (1− υij) m = i ∧ n = j

−υmjυij m 6= i ∧ n = j

0 else

(2.36)

we have

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=

(
∂J

∂υij
−
∑
m

∂J

∂υmj
υmj

)
υij . (2.37)

• LogSoftmax: apply the log of softmax function column-wise to the operand
X. Each column is treated as a separate sample.

mj (X) ← max
i
xij (2.38)

eij (X) ← e
xij−mj(X) (2.39)

sj (X) ←
∑
i

eij (X) (2.40)

υij (X) ← log
eij (X)

sj (X)
(2.41)

∇JX ← ∇JX +
[
∇J

n − exp (V )Diag
(
V ectorSum

(
∇J

n

))]
,(2.42)

where V ectorSum (.) sums each column vector, and Diag (x) is a diagonal
matrix formed by vector x. The gradient can be derived by observing

∂υmn
∂xij

=


1− exp (υij) m = i ∧ n = j

−exp (υij) m 6= i ∧ n = j

0 else

(2.43)

we have

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=

(
∂J

∂υij
−
∑
m

∂J

∂υmj
exp (υij)

)
. (2.44)

• SumElements: sum over all elements in the operand X.
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υ (X) ←
∑
i,j

xij (2.45)

∇JX ← ∇JX +∇J
n. (2.46)

The gradient can be derived by noting that υ and ∇J
n are scalars,

∂υ

∂xij
= 1 (2.47)

and

∂J

∂xij
=
∂J

∂υ

∂υ

∂xij
=
∂J

∂υ
. (2.48)

• L1Norm: take the matrix L1 norm of the operand X.

υ (X) ←
∑
i,j

|xij | (2.49)

∇JX ← ∇JX +∇J
nsgn (X) . (2.50)

The gradient can be derived by noting that υ and ∇J
n are scalars,

∂υ

∂xij
= sgn (xij) (2.51)

and

∂J

∂xij
=
∂J

∂υ

∂υ

∂xij
=
∂J

∂υ
sgn (xij) . (2.52)

• L2Norm: take the matrix L2 norm (Frobenius norm)of the operand X.

υ (X) ←
√∑

i,j

(xij)
2 (2.53)

∇JX ← ∇JX +
1

υ
∇J

nX. (2.54)

The gradient can be derived by noting that υ and ∇J
n are scalars,

∂υ

∂xij
=
xij
υ

(2.55)

and

∂J

∂xij
=
∂J

∂υ

∂υ

∂xij
=

1

υ

∂J

∂υ
xij . (2.56)
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• TimeReverse : does time reverse operation on the input matrix X.

υ (X(:, 1 : T ) ← υ (X(:, T : −1 : 1) (2.57)

∇JX(:, T : −1 : 1) ← ∇J
nX(:,1 : T ). (2.58)

The time reverse node is usually used for bi-directional model. To build a
bi-directional, firstly use a TimeReverse node to do time reverse operation on the
input. Then, do process on the processed input. Finally, use another TimeReverse
node on the output of the processed data.

2.4.3 Computation Node Types with Two Operands

In these computation node types, Evaluate = V (a,Y), where a can be X, λ or
d, and ComputePartialGradient(b) = ∇Jb where b can be X, Y or d.

• Scale: scale each element of Y by λ.

V (λ,Y) ← λY (2.59)

∇Jλ ← ∇Jλ + vec
(
∇J

n

)
◦ vec (Y) (2.60)

∇JY ← ∇JY + λ∇J
n. (2.61)

The gradient∇Jλ can be derived by observing

∂υmn
∂λ

= ymn (2.62)

and

∂J

∂λ
=
∑
m,n

∂J

∂υmn

∂υmn
∂λ

=
∑
m,n

∂J

∂υmn
ymn. (2.63)

Similarly to derive the gradient∇Jy, we note that

∂υmn
∂yij

=

{
λ m = i ∧ n = j

0 else
(2.64)

and get

∂J

∂yij
=
∑
m,n

∂J

∂υmn

∂υmn
∂yij

= λ
∂J

∂υij
(2.65)

• Times: matrix product of operands X and Y. Must satisfy X.cols = Y.rows.
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V (X,Y) ← XY (2.66)

∇JX ← ∇JX +∇J
nY

T (2.67)

∇JY ← ∇JY +XT∇J
n. (2.68)

The gradient∇JX can be derived by observing

∂υmn
∂xij

=

{
yjn m = i

0 else
(2.69)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∑
n

∂J

∂υin
yjn. (2.70)

Similarly to derive the gradient∇JY, we note that

∂υmn
∂yij

=

{
xmi n = j

0 else
(2.71)

and get

∂J

∂yij
=
∑
m,n

∂J

∂υmn

∂υmn
∂yij

=
∑
m

∂J

∂υmj
xmi (2.72)

• ElementTimes: element-wise product of two matrices. Must satisfy X.rows =
Y.rows and X.cols = Y.cols.

υij (X,Y) ← xijyij (2.73)

∇JX ← ∇JX +∇J
n •Y (2.74)

∇JY ← ∇JY +∇J
n •X. (2.75)

The gradient∇JX can be derived by observing

∂υmn
∂xij

=

{
yij m = i ∧ n = j

0 else
(2.76)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂yij

=
∂J

∂υij
yij . (2.77)

The gradient∇JY can be derived exactly the same way due to symmetry.
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• Plus: sum of two matrices X and Y. Must satisfy X.rows = Y.rows. If
X.cols 6= Y.cols but one of them is a multiple of the other, the smaller
matrix needs to be expanded by repeating itself.

V (X,Y) ← X+Y (2.78)

∇JX ←


∇JX +∇J

n X.rows = V.rows ∧X.cols = V.cols

∇JX + 11 ,V.rows∇J
n X.rows = 1 ∧X.cols = V.cols

∇JX +∇J
n1V.cols,1 X.rows = V.rows ∧X.cols = 1

∇JX + 11 ,V.rows∇J
n1v.cols,1 X.rows = 1 ∧X.cols = 1

(2.79)

∇JY ←


∇JY +∇J

n Y.rows = V.rows ∧Y.cols = V.cols

∇JY + 11 ,V.rows∇J
n Y.rows = 1 ∧Y.cols = V.cols

∇JY +∇J
n1V.cols,1 Y.rows = V.rows ∧Y.cols = 1

∇JY + 11 ,V.rows∇J
n1V.cols,1 Y.rows = 1 ∧Y.cols = 1

(2.80)

The gradient ∇JX can be derived by observing that when X has the same di-
mension as V, we have

∂υmn
∂xij

=

{
1 m = i ∧ n = j

0 else
(2.81)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∂J

∂υij
(2.82)

If X.rows = 1 ∧X.cols = V.cols we have

∂υmn
∂xij

=

{
1 n = j

0 else
(2.83)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∑
m

∂J

∂υmj
(2.84)

We can derive∇JX and ∇JY under other conditions similarly.

• Minus: difference of two matrices X and Y. Must satisfy X.rows =
Y.rows. If X.cols 6= Y.cols but one of them is a multiple of the other,
the smaller matrix needs to be expanded by repeating itself.
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V (X,Y) ← X−Y (2.85)

∇JX ←


∇JX +∇J

n X.rows = V.rows ∧X.cols = V.cols

∇JX + 11 ,V.rows∇J
n X.rows = 1 ∧X.cols = V.cols

∇JX +∇J
n1V.cols,1 X.rows = V.rows ∧X.cols = 1

∇JX + 11 ,V.rows∇J
n1v.cols,1 X.rows = 1 ∧X.cols = 1

(2.86)

∇JY ←


∇JY −∇J

n Y.rows = V.rows ∧Y.cols = V.cols

∇JY − 11 ,V.rows∇J
n Y.rows = 1 ∧Y.cols = V.cols

∇JY −∇J
n1V.cols,1 Y.rows = V.rows ∧Y.cols = 1

∇JY − 11 ,V.rows∇J
n1V.cols,1 Y.rows = 1 ∧Y.cols = 1

(2.87)

The derivation of the gradients is similar to that for the Plus node.

• DiagTimes: the product of a diagonal matrix (whose diagonal equals to d)
and an arbitrary matrix Y. Must satisfy d.rows = Y.rows.

υij (d,Y) ← diyij (2.88)

∇Jd ← ∇Jd +∇J
n }Y (2.89)

∇JY ← ∇JY +DiagTimes
(
d,∇J

n

)
. (2.90)

The gradient∇Jd can be derived by observing

∂υmn
∂di

=

{
yin m = i

0 else
(2.91)

and

∂J

∂di
=
∑
m,n

∂J

∂υmn

∂υmn
∂di

=
∑
n

∂J

∂υin
yin (2.92)

Similarly to derive the gradient∇JY we note that

∂υmn
∂yij

=

{
di m = i ∧ n = j

0 else
(2.93)

and get

∂J

∂yij
=
∑
m,n

∂J

∂υmn

∂υmn
∂yij

=
∂J

∂υij
di (2.94)
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• Dropout: randomly set λ percentage of values of Y to be zero and scale the
rest so that the expectation of the sum is not changed:

mij (λ) ←

{
0 rand (0, 1) ≤ λ
1

1−λ else
(2.95)

vij (λ,Y) ← mijyij (2.96)

∇JY ← ∇JY +

{
∇J

n λ = 0

∇J
n •M else

(2.97)

Note that λ is a given value instead of part of the model. We only need to
get the gradient with regard to Y. If λ = 0 then V = X which is a trivial case.
Otherwise it’s equivalent to the ElementTimes node with a randomly set mask M.

• KhatriRaoProduct: column-wise cross product of two matrices X and Y.
Must satisfy X.cols = Y.cols. Useful for constructing tensor networks.

υ.j (X,Y) ← x.j ⊗ y.j (2.98)[
∇JX
]
.j
←

[
∇JX
]
.j
+
[[
∇J

n

]
.j

]
X.rows,Y.rows

Y (2.99)

[
∇JY
]
.j
←

[
∇JY
]
.j
+

[[[
∇J

n

]
.j

]
X.rows,Y.rows

]T
X, (2.100)

where [X]m,n reshapes X to become an m × n matrix. The gradient ∇JX can
be derived by observing

∂υmn
∂xij

=

{
ykj n = j ∧ i = m/Y.rows ∧ k = modulus(m,Y.rows)

0 else
(2.101)

and

∂J

∂xij
=
∑
m,n

∂J

∂υmn

∂υmn
∂xij

=
∑
i,k

∂J

∂υi×y.rows+k,j
ykj . (2.102)

The gradient∇Jy can be derived similarly.

• Cos: column-wise cosine distance of two matrices X and Y. Must satisfy
X.cols = Y.cols. The result is a row vector. Frequently used in natural
language processing tasks.
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υ.j (X,Y) ←
xT
.j y.j

‖x.j ‖ ‖y.j ‖
(2.103)

[
∇JX
]
.j
←

[
∇JX
]
.j
+
[
∇J

n

]
.j
•

[
yij

‖x.j ‖ ‖y.j ‖
− xijυ.,j

‖x.j ‖2

]
(2.104)

[
∇JY
]
.j
←

[
∇JY
]
.j
+
[
∇J

n

]
.j
•

[
xij

‖x.j ‖ ‖y.j ‖
− yijυ.,j

‖y.j ‖2

]
. (2.105)

The gradient∇JX can be derived by observing

∂υ.n
∂xij

=

 yij
‖x.j ‖‖y.j ‖ −

xij

(
xT
.j y.j

)
‖x.j ‖3‖y.j ‖

n = j

0 else
(2.106)

and

∂J

∂xij
=

∑
n

∂J

∂υ.n

∂υ.n
∂xij

=
∂J

∂υ.,j

 yij
‖x.j ‖ ‖y.j ‖

−
xij

(
xT
.j y.j

)
‖x.j ‖3 ‖y.j ‖

 .(2.107)

=
∂J

∂υ.,j

[
yij

‖x.j ‖ ‖y.j ‖
− xijυ.,j

‖x.j ‖2

]
. (2.108)

The gradient∇Jy can be derived similarly.

• ClassificationError: compute the total number of columns in which the in-
dexes of the maximum values disagree. Each column is considered as a
sample and δ is the Kronecker delta. Must satisfy X.cols = Y.cols.

aj (X) ← argmax
i
xij (2.109)

bj (Y) ← argmax
i
yij (2.110)

v (X,Y) ←
∑
j

δ (aj (X) 6= bj (Y)) (2.111)

This node type is only used to compute classification errors during the de-
coding time and is not involved in the model training. For this reason, calling
ComputePartialGradient(b) should just raise an error.

• SquareError: compute the square of Frobenius norm of the difference X −
Y. Must satisfy X.rows = Y.rows and X.cols = Y.cols.
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v (X,Y) ← 1

2
Tr
(
(X−Y) (X−Y)T

)
(2.112)

∇JX ← ∇JX +∇J
n (X−Y) (2.113)

∇JY ← ∇JY −∇J
n (X−Y) . (2.114)

Note that v is a scalar. The derivation of the gradients is trivial given

∂v

∂X
= X−Y (2.115)

∂v

∂Y
= − (X−Y). (2.116)

• CrossEntropy: compute the sum of cross entropy computed column-wise
(over samples) where each column of X and Y is a probability distribution.
Must satisfy X.rows = Y.rows and X.cols = Y.cols.

R (Y) ← log (Y) (2.117)

v (X,Y) ← −vec (X) ◦ vec (R (Y)) (2.118)

∇JX ← ∇JX −∇J
nR (Y) (2.119)

∇JY ← ∇JY −∇J
n (X�Y) . (2.120)

Note that v is a scalar. The gradient∇JX can be derived by observing

∂υ

∂xij
= − log (yij) = −rij (Y) (2.121)

and

∂J

∂xij
=
∂J

∂υ

∂υ

∂xij
= −∂J

∂υ
rij (Y) (2.122)

Similarly to derive the gradient∇JY we note that

∂υ

∂yij
= −xij

yij
(2.123)

and get

∂J

∂yij
=
∂J

∂υ

∂υ

∂yij
= −∂J

∂υ

xij
yij

. (2.124)

• CrossEntropyWithSoftmax: same as CrossEntropy except that Y contains
values before the softmax operation (i.e., unnormalized).
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P (Y) ← Softmax (Y) (2.125)

R (Y) ← log (P (Y)) (2.126)

v (X,Y) ← vec (X) ◦ vec (R (Y)) (2.127)

∇JX ← ∇JX −∇J
nR (Y) (2.128)

∇JY ← ∇JY +∇J
n (P (Y)−X) (2.129)

The gradient∇JX is the same as in the CrossEntropy node. To derive the gradi-
ent∇JY we note that

∂υ

∂yij
= pij (Y)− xij (2.130)

and get

∂J

∂yij
=
∂J

∂υ

∂υ

∂yij
=
∂J

∂υ
(pij (Y)− xij) . (2.131)

• ClassBasedCrossEntropyWithSoftmax: same as CrossEntropyWithSoftmax
except that label Y is a 4 bye T dense matrix. The first row is the word
id, the second row is the class id of this word id, the third row is the first
word id in this class, and the last row is the first word id of the next class.
The last two rows provide the left and right boundary of a slice that corre-
spond to softmax of label given its observation X. It also takes a weight
matrix W for computing with observation X. It also takes outputs Q from
Times node that provides inputs for computing posterior probability given
class.
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for t = 1 : T (2.132)

zt ← Y (0, t) (2.133)

Zt ← [0 · · · δ(i = zt) · · · 0]T (2.134)

ct ← Y (1, t) (2.135)

Ct ← [0 · · · δ(i = ct) · · · 0]T (2.136)

lt ← Y (2, t) (2.137)

rt ← Y (3, t) (2.138)

Wt ← W [:, lt : rt − 1] (2.139)

Pt ← Softmax
(
WT

t X
)

(2.140)

Rt ← log (Pt) (2.141)

v (X,Y) + = Zt ◦Rt (2.142)

Ut ← logSoftmax(Qt) (2.143)

v (X,Y) + = Ct◦Ut (2.144)

∇JQ ← ∇JQ+ ∇J
n (exp(Ut)−Ct) (2.145)

∇JP ← ∇J
n (Pt − Zt) (2.146)

∇JW ← ∇JW+ Xt∇JT
P (2.147)

∇JX ← ∇JX+ Wt∇J
P (2.148)

• CRF: CRF stands for conditional random fields. This node does sequence-
level training, using CRF criterion. This node has three nputs. The first is
the label L. The second is the position dependent score H. The third input is
transition score T. A typical usage of CRF node is using L same as from la-
bels used in cross-entropy node, computing H from child nodes using RNNs,
and computing transition score A from a matrix. The matrix for A can be
initialized with values of 1/|L|, where |L| is the cardinality of the label L.
A forward pass computes the following accumulated score for each time t
for label i. A backward pass computes gradients of the final accumulated
score with respect to the position dependent input ∂R

∂ht(i)
at time t for label

i as follows, and similarly for the gradient to the transition weight ∂R
∂ai,j

for
transition from label i to label j:
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αt (i) ← hit + logaddk (δt−1(k) + ηaki) (2.149)
∂R

∂δt−1(i)
←

∑
j

∂Clogadd
∂δt(j)

exp(δt−1(i) + ai,j)∑
k exp(δt−1(k) + ak,j)

(2.150)

∂R

∂δT(i)
← exp(δT (i))∑

k exp(δT (k))
(2.151)

∂R

∂ht(i)
← lt(i)−

∂R

∂δt(i)
(2.152)

∂R

∂ai,j
←

∑
t

[1(lt−1(i) = 1&&lt(j) = 1)− ∂R

∂δt(j)

exp(αt−1(i) + ηai,j)∑
k exp(αt−1(k) + ηak,j)

](2.153)

Notice that the gradient to the transition weights need to be summed over the
whole observation sequence, which is the current minibatch.

2.4.4 Computation Node Types for Computing Statistics

Sometimes we only want to get some statistics of the input values (either input
features or labels). For example, to normalize the input features we need to com-
pute the mean and standard deviation of the input feature. In speech recognition we
need to compute the frequencies (mean) of the state labels to convert state posterior
probability to the scaled likelihood. Unlike other computation node types we just
described, computation node types for computing statistics do not require a gra-
dient computation function (i.e., this function should not be called for these types
of nodes) because they are not learned and often need to be precomputed before
model training starts. Here we list the most popular computation node types in this
category.

• Mean: compute the mean of the operand X across the whole training set.
When the computation is finished, it needs to be marked so to avoid recom-
putation. When a minibatch of input X is fed in

k ← k +X.cols (2.154)

υ (X) ← 1

k
X1X.cols,1 +

k −X.cols

k
υ (X) (2.155)

Note here X.cols is the number of samples in the minibatch.

• InvStdDev: compute the invert standard deviation of the operand X element-
wise across the whole training set. When the computation is finished, it
needs to be marked so to avoid recomputation. In the accumulation step



CHAPTER 2. COMPUTATIONAL NETWORK 43

k ← k +X.cols (2.156)

υ (X) ← 1

k
X1X.cols,1 +

k −X.cols

k
υ (X) (2.157)

ω (X) ← 1

k
(X •X)1+

k −X.cols

k
ω (X) (2.158)

When the end of the training set is reached,

υ ← (ω − (υ • υ))1/2 (2.159)

υ ← 1� υ. (2.160)

• PerDimMeanVarNorm: compute the normalized operand X using mean m
and invert standard deviation s for each sample. Here X is matrix whose
number of columns equals to the number of samples in the minibatch and m
and s are vectors that needs to be expanded before element-wise product is
applied.

V (X) ← (X−m) •s. (2.161)

2.5 Convolutional Neural Network

A Convolutional neural network (CNN) [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 29]
provides shift invariance over time and space and is critical to achieve state-of-the-
art performance on image recognition. It has also been shown to improve speech
recognition accuracy over pure DNNs on some tasks [12, 16, 17, 14, 15]. To sup-
port CNN we need to implement several new computation nodes.

• Convolution: convolve element-wise products of a kernel to an image. An
example of a convolution operation is shown in Figure 2.7, where the input to
the convolution node has three channels (represented by three 3×3 matrices)
and the output has two channels (represented by two 2 × 2 matrices at top).
A channel is a view of the same image. For example, an RGB image can be
represented with three channels: R, G, B. Each channel is of the same size.

There is a kernel for each output and input channel pair. The total number of
kernels equals to the product of the number of input channels Cx and the number
of output channels Cv. In Figure 2.7 Cx = 3, Cv = 2 and the total number
of kernels is 6. Each kernel Kk` of input channel k and output channel ` is a
matrix. The kernel moves along (and thus shared across) the input with strides (or
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subsampling rate) Sr and Sc at the vertical (row) and horizontal (column) direction,
respectively. For each output channel ` and input slice (i, j) (the i-th step along the
vertical direction and j-th step along the horizontal direction)

υ`ij (K,Y) =
∑
k

vec (Kk`) ◦ vec (Ykij) , (2.162)

where Ykij has the same size as Kk`.
This evaluation function involves many small matrix operations and can be

slow. Chellapilla et al. [9] proposed a technique to convert all these small matrix
operations to a large matrix product as shown at the bottom of Figure 2.7. With this
trick all the kernel parameters are combined into a big kernel matrix W as shown
at left bottom of Figure 2.7. Note that to allow for the output of the convolution
node to be used by another convolution node, in Figure 2.7 we have organized
the conversion slightly differently from what proposed by Chellapilla et al. [9]
by transposing both the kernel matrix and the input features matrix as well as the
order of the matrices in the product. By doing so, each sample in the output can
be represented by Or×Oc columns of Cv × 1 vectors which can be reshaped to
become a single column, where

Or =

{
Ir−Kr
Sr

+ 1 no padding
(Ir−mod(Kr,2))

Sr
+ 1 zero padding

(2.163)

is the number of rows in the output image, and

Oc =

{
Ic−Kc
Sc

+ 1 no padding
(Ic−mod(Kc,2))

Sc
+ 1 zero padding

(2.164)

is the number of rows in the output image, where Ir and Ic are, respectively, the
number of rows and columns of the input image, Kr and Kc are, respectively,
the number of rows and columns in each kernel. The combined kernel matrix
is of size Cv × (Or ×Oc × Cx), and the packed input feature matrix is of size
(Or ×Oc × Cx)× (Kr ×Kc).

With this conversion the related computations of the convolution node with
operands W,Y become
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Figure 2.7: Example convolution operations. Top: the original convolution oper-
ations. Bottom: the same operations represented as a large matrix product. Our
matrix organization is different from what proposed by Chellapilla et al. [9] to al-
low for stacked convolution operations. (Modified from the figure in Chellapilla et
al. [9], permitted to use by Simard)

X (Y) ← Pack (Y) (2.165)

V (W,Y) ← WX (2.166)

∇JW ← ∇JW +∇J
nX

T (2.167)

∇JX ← WT∇J
n (2.168)

∇JY ← ∇JY +Unpack
(
∇JX
)
. (2.169)

Note that this technique enables better parallelization with large matrix oper-
ations but introduces additional cost to pack and unpack the matrices. In most
conditions, the gain outweighs the cost. By composing convolution node with plus
nodes and element-wise nonlinear functions we can add bias and nonlinearity to
the convolution operations.

• MaxPooling: apply the maximum pooling operation to input X inside a win-
dow with size Kr × Kc for each channel. The operation window moves
along the input with strides (or subsampling rate) Sr and Sc at the vertical
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(row) and horizontal (column) direction, respectively. The pooling operation
does not change the number of channels and so Cv = Cx. For each output
channel ` and the (i, j)-th input slice X`ij of size Kr ×Kc we have

υ`ij (X) ← max (X`ij) (2.170)[
∇JX
]
`,im,jn

←

{[
∇JX
]
`,im,jn

+
[
∇Jn
]
`,im,jn

(m,n) = argmaxm,n x`,im,jn[
∇JX
]
`,im,jn

else
(2.171)

where im = i× Sr +m, and jn = j × Sc + n.

• AveragePooling: same as MaxPooling except average instead of maximum
is applied to input X inside a window with size Kr ×Kc for each channel.
The operation window moves along the input with strides (or subsampling
rate) Sr and Sc at the vertical (row) and horizontal (column) direction, re-
spectively. For each output channel ` and the (i, j)-th input slice X`ij of size
Kr ×Kc we have

υ`ij (X) ← 1

Kr ×Kc

∑
m,n

x`,im,jn (2.172)

[
∇JX
]
`ij
←

[
∇JX
]
`ij

+
1

Kr ×Kc

[
∇Jn
]
`ij
, (2.173)

where im = i× Sr +m, and jn = j × Sc + n.

2.6 Recurrent Connections

In the above sections, we assumed that the CN is a DAG. However, when there
are recurrent connections in the CN, this assumption is no longer true. The recur-
rent connection can be implemented using a Delay node that retrieves the value
λ samples to the past where each column of Y is a separate sample stored in the
ascending order of time.

υ.j (λ,Y) ← Y.(j−λ) (2.174)[
∇JY
]
.j
←

[
∇JY
]
.j
+
[
∇Jn
]
.j+λ

. (2.175)

When j − λ < 0 some default values need to be set for Y.(j−λ). The gradient can
be derived by observing
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Figure 2.8: An example CN with a delay node. The shaded nodes form a recurrent
loop which can be treated as a composite node.

∂υmn
∂yij

=

{
1 m = i ∧ n = j + λ

0 else
(2.176)

and

∂J

∂yij
=
∑
m,n

∂J

∂υmn

∂υmn
∂yij

=
∂J

∂υij+λ
. (2.177)

An example CN that contains a delay node is shown in Figure 2.8. Different
from the CN without a directed loop, a CN with a loop cannot be computed for a
sequence of samples as a batch since the next sample’s value depends on the the
previous samples. A simple way to do forward computation and backpropagation
in a recurrent network is to unroll all samples in the sequence over time. Once
unrolled, the graph is expanded into a DAG and the forward computation and gra-
dient calcalclation algorithms we just discussed can be directly used. This means,
however, all computation nodes in the CN need to be computed sample by sample
and this significantly reduces the potential of parallelization.

There are two approaches to speedup the computation of a CN with directed
loops. In the next two subsections, we will discuss them.
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2.6.1 Sample by Sample Processing Only Within Loops

The first approach identifies the loops in the CN and only applies the sample-by-
sample computation for nodes inside the loops. For the rest of the computation
nodes all samples in the sequence can be computed in parallel as a single ma-
trix operation. For example, in Figure 2.8 all the nodes included in the loop of
T(3) → P(3) → S(1) → D → T(3) need to be computed sample by sample.
All the rest of the nodes can be computed in batches. A popular technique is to
identify the strongly connected components (SCC) in the graph, in which there is a
path between each pair of vertices and adding any edges or vertices would violate
this property, using algorithms such as Tarjan’s strongly connected components al-
gorithm [30]1. Once the loops are identified, they can be treated as a composite
node in the CN and the CN is reduced to a DAG. All the nodes inside each loop
(or composite node) can be unrolled over time and also reduced to a DAG. For all
these DAGs the forward computation and backprogation algorithms we discussed
in the previous sections can be applied. The detailed procedure in determining the
forward computation order in the CN with arbitrary recurrent connections is de-
scribed in Algorithm 2.6. Since the input to the delay nodes are computed in the
past they can be considered as the leaf if we only consider one time slice. This
makes the order decision inside loops much easier.

2.6.2 Processing Multiple Utterances Simultaneously

The second approach to speed up the processing in the recurrent CN is to process
multiple sequences at a time. To implement this, we need to organize sequences in
a way that the frames with the same frame id from different sequences are grouped
together as shown in Figure 2.9. By organizing sequences in this way we can
compute frames from different sequences in batch when inside a loop and compute
all samples in all utterances in one batch outside loops. For example, in Figure 2.9
we can compute 4 frames together for each time step. If sequences have different
lengths, we can truncate them to the same length and save the final state of the
sequences that are not finished yet. The remaining frames can be grouped with
other sequences for further processing.

2.6.3 Building Arbitrary Recurrent Neural Networks

With the inclusion of delay nodes, we can easily construct complicated recur-
rent networks and dynamic systems. For example, the long-short-term-memory

1Tarjan’s algorithm is favored over others such as Kosaraju’s algorithm [31] since it only requires
one depth-first traverse, has a complexity of O (|V|+ |E|), and does not require reversing arcs in the
graph.
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Algorithm 2.6 Forward computation of an arbitrary CN
1: procedure DECIDEFORWARDCOMPUTATIONORDERWITHRECCURENT-

LOOP(G = (V,E))
2: StronglyConnectedComponentsDetection(G,G′) . G′ is a DAG of

strongly connected components (SCC)
3: Call DecideForwardComputationOrder on G′→ order for DAG
4: for v ∈ G, v ∈ V do
5: Set the order of v equal the max order of the SCC V . This guarantee

the forward order of SCC is correct
6: end for
7: for each SCC V in G do
8: Call GetLoopForwardOrder(root of V)→ order for each SCC
9: end for

10: return order for DAG and order for each SCC (loop)
11: end procedure
12: procedure GETLOOPFORWARDORDER(root)
13: Treat all the delayNode as leaf and Call DecideForwardComponen-

tionOrder
14: end procedure
15: procedure STRONGLYCONNECTEDCOMPONENTSDETECTION(G =

(V,E), DAG)
16: index = 0, S = empty
17: for v ∈ V do
18: if v.index is undefined then StrongConnectComponents(v,DAG)
19: end if
20: end for
21: end procedure
22: procedure STRONGCONNECTCOMPONENT(v,DAG)
23: v.index = index, v.lowlink = index, index = index+ 1
24: S.push(v)
25: for (v, w) ∈ E do
26: if w.index is undefined then
27: StrongConnectComponent(w)
28: v.lowlink = min(v.lowlink,w.lowlink)
29: else if w ∈ S then
30: v.lowlink = min(v.lowlink,w.index)
31: end if
32: end for
33: if v.lowlink = v.index then . If v is a root node, pop the stack and

generate an SCC
34: start a new strongly connected component
35: repeat
36: w = S.pop()
37: add w to current strongly connected component
38: until w == v
39: Save current strongly connected component to DAG
40: end if
41: end procedure
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Figure 2.9: Process multiple sequences in a batch. Shown in the figure is an exam-
ple with 4 sequences. Each color represents one sequence. Frames with the same
frame id from different sequences are grouped together and computed in batch.
The right matrix is a reshape of the left matrix.
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(LSTM) [18, 32] neural network that is widely used to recognize and generate
hand-written characters involves the following operations:

it = σ
(
W(xi)xt +W(hi)ht−1 +W(ci)ct−1 + b(i)

)
(2.178)

ft = σ
(
W(xf)xt +W(hf)ht−1 +W(cf)ct−1 + b(f)

)
(2.179)

ct = ft • ct−1 + it • tanh
(
W(xc)xt +W(hc)ht−1 + b(c)

)
(2.180)

ot = σ
(
W(xo)xt +W(ho)ht−1 +W(co)ct + b(o)

)
(2.181)

ht = ot • tanh (ct) , (2.182)

where σ (.) is the logistic sigmoid function, it, ft, ot, ct and ht are vectors with
same size (since there is one and only one of each in every cell) to represent val-
ues at time t of the input gate, forget gate, output gate, cell, cell input activation,
and hidden layer, respectively, W’s are the weight matrices connecting different
gates, and b’s are the corresponding bias vectors. All the weight matrices are full
except the weight matrix W(ci) from the cell to gate vectors which is diagonal. It
is obvious that the whole LSTM can be described as a CN with following node
types: Times, Plus, Sigmoid, Tanh, DiagTimes, ElementTimes and Delay. More
specifically, using these computational nodes, the LSTM can be described as:
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H(d) = Delay (H) (2.183)

C(d) = Delay (C) (2.184)

T(1) = Macro2W1b(W(xi),X,W(hi),H(d),b(i)) (2.185)

I = Sigmoid
(
Plus

(
T(1), DiagT imes

(
d(ci),C(d)

)))
(2.186)

T(2) = Macro3W1b
(
W(xf),X,W(hf),H(d),W(cf)C(d),b(f)

)
(2.187)

F = Sigmoid
(
T(2)

)
(2.188)

T(3) = Macro2W1b
(
W(xc),X,W(hc),H(d),b(c)

)
(2.189)

T(4) = ElementT ime
(
F,C(d)

)
(2.190)

T(5) = ElementT imes
(
I, Tanh

(
T(3)

))
(2.191)

C = Plus
(
T(4),T(5)

)
(2.192)

T(6) = Macro3W1b
(
W(xo),X,W(ho),H(d),W(co)C,b(o)

)
(2.193)

O = Sigmoid
(
T(6)

)
(2.194)

H = ElementT ime (O, Tanh (C)) , (2.195)

where we have defined the macro Macro2W1b
(
W(1), I(1),W(2), I(2),b

)
as

S(1) = Plus
(
Times

(
W(1), I(1)

)
, T imes

(
W(2), I(2)

))
(2.196)

Macro2W1b = Plus
(
S(1),b

)
(2.197)

and macro Macro3W1b
(
W(1), I(1),W(2), I(2),W(3 ), I(3 ),b

)
as

S(1) = Macro2W1b
(
W(1), I(1),W(2), I(2),b

)
(2.198)

Macro3W1b = Plus
(
S(1), T imes

(
W(3), I(3)

))
(2.199)



Chapter 3

Computational Network Toolkit

The computational network toolkit (CNTK) implements CNs. It is written in C++
and supports both GPU (CUDA) and CPU execution. CNTK supports arbitrary
valid computational networks and makes building DNNs, CNNs, RNNs, LSTMs,
and other complicated networks as simple as describing the operations of the net-
works. The toolkit is implemented with efficiency in mind. It removes duplicated
computations in both forward and backward passes, uses minimal memory needed
and reduces memory reallocation by reusing them. It also speeds up the model
training and evaluation by doing batch computation whenever possible. In this
chapter we introduce how to exploit CNTK to accelerate your research.

3.1 Run CNTK

To run CNTK you use a command line similar to

cntk configFile=yourExp.config

where yourExp.config is a CNTK configuration file, which typically contains sev-
eral command blocks. A command block is a top level block of the configuration.
Each command block must specify what action to be carried out with related infor-
mation. To illustrate configuration and command blocks, we use a simple example
below.

command=mnistTrain

mnistTrain=[
action="train"

NDLNetworkBuilder=[

53
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networkDescription="c:\cntk\config\sample.ndl"
run=ndlMacroUse

]

SGD=[
modelPath="c:\cntk\model\mnist.cn"
learningRatesPerMB=0.001
minibatchSize=32
epochSize=60000
maxEpochs=50

]

reader=[
readerType="UCIFastReader"
file="c:\cntk\data\mnist\mnist_train.txt"

features=[
dim=784
start=1

]

labels=[
dim=1
start=0
labelDim=10

labelMappingFile="c:\cntk\data\mnist\mnistlabels.txt
"

]
]

]

In this example, you can notice that all configuration values are specified as
a name-value pair. A value can be a numeric, a string, a list, or even a block of
configurations.

The top-level configuration parameter command determines what command
blocks are to be executed and in what order they are executed if more than one
command block is specified. In this example, the mnistTrain command block will
be executed. This command block specifies the action, which is train in this case,
to execute. There are often three parameter blocks associated with the train action:
a network builder block, which specifies how to build a network from scratch and
how to load a model from an existing model file, a learner block, which specifies
what training algorithm to use, and a reader block, which specifies where and how
to load features and labels. In this specific example, the NDL (network definition
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language) network builder indicated by the NDLNetworkBuilder block is used to
define the network, the stochastic gradient descent learning algorithm as indicated
by the SGD block is used to train the model, and the UCIFastReader is used to load
the feature and labels from file in UCI format. Note that readers are implemented
as separate DLLs, and the name of the reader is also the name of the DLL file that
will be loaded to read data.

The most frequently used configuration blocks are:

• Network Builders

– SimpletNetworkBuilder: creates one of the predefined networks with
limited customization.

– NDLNetworkBuilder: creates a network defined using the network de-
scription language (NDL). It provides full flexibility in designing your
own network operations and structure.

• Learners

– SGD : uses the stochastic gradient descent algorithm to train the model.
It is the desired trainer for most applications.

• Data Readers

– UCIFastReader: reads the text-based UCI format, which contains la-
bels and features combined in one file.

– HTKMLFReader: reads the HTK/MLF format files, often used in speech
recognition applications.

– BinaryReader: reads files in a CNTK binary format. It is also used
by UCIFastReader to cache the dataset in a binary format for faster
processing.

– LMSequenceReader: reads text-based files that contain word sequences,
for predicting word sequences. This is often used in language model-
ing.

– LUSequenceReader: reads text-based files that contain word sequences
and their labels. This is often used for language understanding.

In the following, we will describe CNTK configuration and the above blocks in
detail.
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3.2 Network Builders

Computational networks are constructed using either the network description lan-
guage (NDL) builder or the simple network builder.

3.2.1 The Simple Network Builder

The behavior of the simple network builder is controlled by the SimpleNetwork-
Builder block of the options. When an option is omitted the default value is as-
sumed. Here we list all the control parameters available.

• initValueScale: the value for scaling the range of the random numbers used
for initialization. Default is 1. If the model parameters are initialized us-
ing the uniform distribution, the random number range will be adjusted to
[−0.05× initV alueScale, 0.05× initV alueScale]. If the model param-
eters are initialized using the Gaussian distribution, the standard deviation
will be adjusted to 0.2× initV alueScale/

√
fanout.

• layerTypes: the type of nonlinear operation in hidden layers. Valid values
are sigmoid (default), Tanh, and RectifiedLinear.

• uniformInit: determines whether to use uniform distribution to initialize
model parameters. Valid values are true (default) and false (using Gaussian
distribution to initialize model parameters).

• applyMeanVarNorm: whether to apply mean/variance normalization on the
input. Valid values are true and false (default)

• addDropoutNodes: whether to add drop-out nodes. The default is false. If
specified to true, a drop-out node will be applied to the input node and the
output of every hidden layer.

• layerSizes: specifies the dimensions of layers. For instance, layerSizes=128:10:200:4000
describes a neural network with two hidden layers. The first hidden layer has
a dimension of 10, and the second hidden layer has a dimension of 200. The
input and output layers have a dimension of 128 and 4000, respectively.

• trainingCriterion: the criterion used for training. The default is CrossEn-
tropyWithSoftmax. Alternatives are SquareError, CrossEntropy, and Class-
BasedCrossEntropyWithSoftmax. The ClassBasedCrossEntropyWithSoft-
max is for class-based training, which would be useful if the output dimen-
sion is large and therefore need to be split into classes to speed-up the train-
ing and evaluation.
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• evalCriterion: the criterion for evaluation. The selection of values are the
same as the trainingCriterion.

• lookupTableOrder: specifies the order of context expanding in the lookupN-
ode. The default value is 1. Setting it to a value such as 3 would expand the
input dimension in a context-dependent way by an order of 3. For example,
if the input observation has a dimension of 20, setting this value to 3 would
set the input node dimension to 60.

For recurrent neural networks (RNNs), there are additional parameters.

• recurrentLayer: specifies the layers that contain self recurrent connections.
By default there is no recurrent layer. Use the syntax n1:n2:n3 to specify that
layers n1, n2, and n3 have recurrent connections.

• defaultHiddenActivity: the default hidden layer activity value used by the
delay node when accessing values before the first observation. The default
value is 0.1.

• rnnType: the type of predefined networks. Valid values are

– SIMPLENET: the feed-forward neural network. This is the default
network type.

– SIMPLERNN: the simple RNN, which may be a deep RNN in which
several layers have recurrent loops.

– CLASSLM: the class-based simple RNN. It uses sparse input, sparse
parameter and sparse output. This is often used for language modeling
tasks.

– LBLM: the log-bilinear neural network.

– LSTM: the long short-term memory neural network.

– CLASSLSTM: the class-based long short-term memory neural net-
work. It uses sparse input, sparse parameter and sparse output. This
is often uesd for language modeling tasks.

3.2.2 The Network Description Language (NDL)

The simple network builder only allows you to build one of the predefined network
types. To build more complicated networks, you need to use the NDL network
builder which has the following parameters. Detailed description on NDL can be
found in Chapter 4.
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• networkDescription: the file path of the NDL script, which will be described
in Chapter 4, to execute. If there is no networkDescription file specified then
the NDL is assumed to be in the same configuration file as the NDLNet-
workBuilder subblock, specified with the run parameter. Note that only one
file path may be specified via the networkDescription parameter. To load
multiple files of macros, use the ndlMacros parameter.

• run: the block of the NDL that will be executed. If an external NDL file is
specified via the networkDescription parameter, the run parameter identifies
a block in that file. This parameter overrides any run parameters that may
already exist in the file. If no networkDescription file is specified, the run
parameter identifies a block in the current configuration file.

• load: the blocks of NDL scripts to load. Multiple blocks can be specified
via a ":" separated list. The blocks specified by the load parameter typically
contain macros, which will be described in Chapter 4, for use by the run
block. Similar to the run parameter, the load parameter identifies blocks in
an external NDL file and overrides any load parameters that may already
exist in the file, if a file is specified by the networkDescription parameter. If
no networkDescription file is specified, load identifies a block in the current
configuration file.

• ndlMacros: the file path where NDL macros may be loaded. This param-
eter is usually used to load a default set of NDL macros that can be used
by all NDL scripts. Multiple NDL files, each specifying different sets of
macros, can be loaded by specifying a "+" separated list of file paths for this
ndlMacros parameter. In order to share macros with other command blocks
such as model editing language (MEL) blocks we will describe in Chapter
4, you should define it at the root level of the configuration file.

• randomSeedOffset: a non-negative random seed offset value in initializing
the learnable parameters. The default value is 0. This allows users to run
experiments with different random initialization.

3.3 Learners

Up to now, CNTK implements an SGD learner. New learners will be added in the
future.
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3.3.1 Stochastic Gradient Descent Learner

The behavior of the SGD algorithm is controlled by the SGD block of the options.
When an option is omitted the default value is assumed. Here we list all the control
parameters used.

3.3.1.1 Training process control

• modelPath: the full path to save the final model. Must be provided and points
to a valid file name.

• trainCriterionNodeName: the name of the training criterion node. If not
provided the default training criterion node in the network will be used.

• evalCriterionNodeName: the name of the evaluation criterion node. If not
provided the default evaluation criterion node in the network will be used.

• epochSize: epoch size, i.e., the number of samples in each epoch. Often is
but may be different from the dataset size. An intermediate model and other
check point information is saved for each epoch. When set to 0 the whole
dataset size is used.

• keepCheckPointFiles: whether you want to keep the check point file after a
new epoch starts. Valid values are true and false (default).

• maxEpochs: maximum number of epochs to run.

• minibatchSize: minibatch size for each epoch. Default value is 256. Can
use syntax such as 128*2:1024 which means using minibatch size 128 for 2
epochs and then 1024 for the rest.

• dropoutRate: dropout rate during the training procedure. Default is 0.0. Can
use syntax such as 0.5*10:0.2 which means using dropout rate 0.5 for 10
epochs and then 0.2 for the rest.

• maxTempMemSizeInSamplesForCNN: maximum temporary memory used
(in number of samples) when packaging and unpackaging input features.
Default is 0, which means using any value as needed. Useful to control the
memory foot print esp. when run under GPU.

• executionEngine: the execution engine to use. Valid values is synchronous
(default).
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3.3.1.2 Learning rate and momentum control

• learningRatesPerMB: learning rates per minibatch. Useful when you want
to use the same learning rate while the minibatch size is changed. Can use
syntax such as 0.8*10:0.2 which means using the learning rate 0.8 for 10
epochs and then 0.2 for the rest. learningRatesPerMB may be missing, for
example, when learningRatesPerSample is provided or the automatic learn-
ing rate determination algorithm is used.

• learningRatesPerSample: learning rates per sample. Useful when you want
to keep the learning rates per sample constant, i.e., automatically increases
effective learning rate for the minibatch when the minibatch size is increased.
Can use syntax such as 0.008*10:0.002 which means using the learning rate
0.008 for 10 epochs and then 0.002 for the rest. learningRatesPerSample
may be missing, for example, when learningRatesPerMB is provided or the
automatic learning rate determination algorithm is used.

• momentumPerMB: momentum per minibatch. Default is 0.9. Can use syntax
such as 0.1*2:0.9 which means using momentum 0.1 for 2 epochs and then
0.9 for the rest.

• momentumPerSample: momentum per sample. Useful when you want to
keep the momentum per sample constant, i.e., automatically scales effective
momentum for the minibatch when the minibatch size is changed. Can use
syntax such as 0.9996*10:0.998 which means using the per sample momen-
tum 0.9996 for 10 epochs and then 0.998 for the rest. momentumPerSample
may be missing, for example, when momentumPerMB is provided.

• autoAdjust: contains the information related to the automatic learning rate
control. Default value is empty (“”) which means no automatic learning rate
control. Inside the block, there can be following values:

– autoAdjustLR: the automatic learning rate adjustment algorithm to use.
Valid values are None (default, don’t auto adjust learning rate), Ad-
justAfterEpoch (check the training criterion after each epoch using the
development set of the training set and decide whether to adjust the
learning rate), and SearchBeforeEpoch (search the learning rate based
on a small portion of the training set before each epoch starts).

used in the AdjustAfterEpoch mode:

– reduceLearnRateIfImproveLessThan: reduce the learning rate if the
improvement is less than this value. Default is 0.
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– learnRateDecreaseFactor: the learning rate decrease factor. Default
value is 0.618.

– increaseLearnRateIfImproveMoreThan: increase the learning rate if
the improvement is larger than this value. Default value is 1#INF (in-
finity) which means never increase.

– learnRateIncreaseFactor: the learning rate increase factor. Default
value is 1.382.

– loadBestModel: weather to load the best model if the current model
decreases the performance. Valid values are true (default) and false.

– learnRateAdjustInterval: determine the frequency of applying the learn-
ing rate adjustment check. Default is 1 epoch. If this value is set to a
value larger than 1 the learning rate adjustment will be based on the av-
erage criterion computed from the last learnRateAdjustInterval epochs.

Used in the SearchBeforeEpoch mode.

– numMiniBatch4LRSearch: the number of minibatches used to search
the learning rate. Default value is 500. It’s typically set to 10-20% of
the total minibatches in an epoch.

– numPrevLearnRate: number of previous learning rates used as a hint
to the search range. Default value is 5.

– numBestSearchEpoch: number of epochs in which we use the best
learning rate instead of the sufficient learning rate . Default value is
1.

Used in the Adaptive Minibatch Sizing mode.

– numMiniBatch4LRSearch: the number of minibatches used to search
the minibatch size whenin adaptive minibatch size mode. Default value
is 500. It’s typically set to 10-20% of the total minibatches in an
epochthis is shared with the search for learning rate in SearchBeforeEp-
och mode.

– autoAdjustMinibatch: enable or disable whether minibatch size is adap-
tively adjusted. Default value is false.Adapative minibatch sizing will
begin on epochs starting after user minbatch sizes expcitilyspecified are
complete. For example if the userspecifed minibatchSize=256:1024,
then 256 and 1024are used in the first 2 Epochs and adaptive mini-
batchsizing is used aferwards
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– minibatchSizeTuningFrequency: The number of epochs to skip, on a
periodic basis, beforedynamically adjusting the minibatch size. Default
value is 1.

– minibatchSizeTuningMax: The maximum size allowed for anadaptively
adjusted minibatch size. Default value is 1048576.

3.3.1.3 Gradient control

• gradientClippingWithTruncation: whether to use the truncation based gra-
dient clipping to control gradient explosion. Valid values are true (default)
and false. If it is false the norm based clipping will be used instead which is
more expensive.

• clippingThresholdPerSample: the clipping thread for each sample. Default
value is 1#INF which means infinity (i.e., clipping is turned off).

• L2RegWeight: the L2 regularization weight. Default is 0.

• L1RegWeight: the L1 regularization weight. Default is 0.

• gradUpdateType: gradient update type. Valid values are None (default, no
special treatment to the gradient), AdaGrad, and RmsProp. When gradUp-
dateType equals to AdaGrad or RmsProp, you can control the behavior of
the gradient update using following parameters:

– normWithAveMultiplier : normalize the gradient with the average mul-
tipliers applied to the gradients by the AdaGrad/RmsProp algorithm.
Default is true (default).

When gradUpdateType equals to RmsProp, you can control the behavior of
the gradient update using following parameters:

– rms_wgt_inc: multiplicative increment of the learning rate scale. De-
fault is 1.2.

– rms_wgt_dec: multiplicative decrement of the learning rate scale. De-
fault is 0.75.

– rms_wgt_max: maximum learning rate scale allowed. A value closer
to 1 makes the learning rate adjustment more stable but slower. Default
is 10.

– rms_wgt_min: minimum learning rate scale allowed. A value closer to
1 makes the learning rate adjustment more stable but slower. Default is
0.1.



CHAPTER 3. COMPUTATIONAL NETWORK TOOLKIT 63

– rms_gamma: smoothing factor used to estimate the moving average
of the variance. The smaller the value, the quicker it forgets the past
information. Default is 0.99.

• gaussianNoiseInjectStd: the standard deviation of the Gaussian noise added
when using the AdaGrad approach. Default is 0.

3.3.1.4 Adaptation

Only KL divergence regularization is directly supported. Other adaptation tech-
niques can be easily implemented by adding computation nodes to the network
using the model editing language (MEL) that we will describe in Chapter 4.

• adaptationRegType: adaptation regularization type. Valid values are None
(default) and KL (for KL divergence based regularization)

• adaptationRegWeight: adaptation regularization weight. Default value is 0.

3.3.1.5 Information display

• traceLevel: trace level to decide what information to print out in the stderr.
Valid values are 0 (default) and 1.

• numMBsToShowResult: display training statistics after how many minibatches.
Default is 10.

3.3.1.6 Gradient Check

• gradientCheck: determines whether to use the gradient checker. The default
value is false. When using the gradient checker you need to use a minibatch
size that is larger than the sequence length for RNNs due to the truncated
back-propagation through time (BPTT) algorithm used to train RNNs, and
a smaller learning rate to prevent numerical issues caused by divergence. In
addition, precision should be set to double.

3.4 Data Readers

The reader block is used for all types of readers and the readerType parameter
determines which reader to use. Each reader implements the same IDataReader
interface which will be described in detail in Chapter 5. Many parameters in the
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reader block are shared across different types of readers. Some are specific to a par-
ticular reader. In this block we will introduce the main data readers implemented
in CNTK.

3.4.1 UCIFastReader

UCIFastReader reads text-based UCI format data, in which each data record is a
line of space-delimited floating point feature and label values. The label infor-
mation is either at the beginning or the end of each line, if label information is
provided. To use the UCIFastReader you set the readerType to UCIFastReader as
in

reader=[
readerType="UCIFastReader"

file="c:\cntk\data\mnist\mnist_train.txt"

features=[
dim=784
start=1

]

labels=[
dim=1
start=0
labelDim=10

labelMappingFile="c:\cntk\data\mnist\mnistlabels.txt
"

]
]

In this example you can also notice two sub-blocks named features and labels.
These names are used by the data readers to match the computation node in your
network and the data loaded from the files. If simple network builders are used
to create your network, features and labels are the standard names of the feature
and label nodes, respectively. If you defined your network using the NDL network
builder you need to make sure these names matches the corresponding nodes in
your network. The UCIFastReader has following parameters:

• file: the file that contains the dataset. This parameter has been moved up
from the features and labels sub-blocks, because UCIFastReader requires
the file be the same, and moving up a level is an excellent way to make sure
this restriction is met.
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• dim: the dimension of the input value. Note that each column in the UCI
data file represents one dimension of the input data.

• start: the start column (zero-based) of the input data.

• labelDim: the number of possible label values. This parameter is required for
categorical labels since the dimension of the label node will be determined
by this value. Note that the label value itself is typically specified in one
column in the UCI data file.

• labelMappingFile: the path to a file used to map from the label value to a
numerical label identifier. The file typically lists all possible label values,
one per line, which might be text or numeric. The zero-based line number is
the identifier that will be used by CNTK to identify that label. It’s important
that the same label mapping file is used for training and evaluation. This
can be done by moving the labelMappingFile parameter up so that it can be
shared by both the training and evaluation blocks.

3.4.2 HTKMLFReader

HTKMLFReader is a data reader that reads files typically associated with speech
recognition tasks, and specifically with the HTK suite of tools. The reader can take
as input two types of files, a list of feature files known in HTK parlance as an SCP
file (“script” file) and a label file known as a MLF file (“model label file”). Because
CNTK can be used to build networks with arbitrary topology including networks
with multiple inputs and outputs, the HTKMLFReader can process one or multiple
SCP and MLF files. A typical example of usage for the HTKMLFReader is as
follows:

reader=[
readerType="HTKMLFReader"
readMethod="rollingWindow"
miniBatchMode="partial"
randomize="auto"

features=[
dim=792
scpFile="$ScpDir$\TIMIT.train.scp.fbank.fullpath"

]

labels=[
mlfFile="$MlfDir$\TIMIT.train.align_cistate.mlf.cntk"
labelDim=183
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labelMappingFile="$MlfDir$\TIMIT.statelist"
]

]

The HTKMLFReader has the following configuration parameters:

• readMethod: the method used to read the features files into memory for pro-
cessing during network training. The “rollingWindow” option reads in all
feature files and stores them on disk in one large temporary binary file. The
data is randomized by running a large rollowing window over the data in
this file and randomizing the data within the window. This method produces
more thorough randomization of the data but requires a large temprorary
file written to disk. The other option is “blockRandomize” which divides
the data into large blocks and then randomizes the order of the blocks and
the order of the data within the block. The data in each block is read di-
rectly from the feature files. Because this does not require any temporary
feature files, this option is more appropriate for large corpora. The default is
blockRandomize. Note that the blockRandomize option requires an archive
format of SCP file, described below. Also, as described below, when used in
conjunction with “frameMode=false” the blockRandomize read method will
randomize over utterances, but not frames. This is appropriate for use with
recurrent architectures when preserving the sequential nature of the training
examples is desired.

• pageFilePath: specify where the temporary page file of the features should
be stored. By default it will use system provided temp file.

• randomize: Auto or None if readMethod is rollingWindow, Auto, None, or
a specified block size if readMethod is blockRandomize. It determines how
the reader should randomize the data. When a block size is specified, only
that much of data will be in memory at one time.

• minibatchMode: Partial or Full, this option decides how to handle the last
minibatch if there are not enough frames to form a complete minibatch of the
requested size. The default is Partial, which will use the remaining frames
in a smaller final minibatch of the training epoch. The Full option will only
process complete minibatches.

The above example has two sources of data being processed by the reader, features,
in the form of a list of HTK feature files, and labels, which are in the form of an
HTK MLF file. Both features and labels correspond to nodes in the computational
network, in this case, the input and output nodes, respectively. Note that “fea-
tures” and “labels” are the default names used by the SimpleNetworkBuilder but if
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the network is designed using the Network Descrition Language (NDL), then any
names can be used, as long as they each have a corresponding node in the network.

To specify continuous-valued features, e.g. MFCC’s or log mel filterbank co-
efficients, the following parameters should be included in the a confguration block:

• scpFile: a list of files to be processed. The files should be HTK compatible
files and can be specified in standard mode or “archive” model. The details
of using an archive are described below. configuration parameter.

• dim: an integer that specifies the full feature vector dimension with the de-
sired context window. For example, if you had 72-dimensional features (24-
dimensional filterbank features plus delta and delta-delta coefficients) and
the network is designed to process a context window of 11 frames, the spec-
ified dimension should be 792. Note that only symmetric context windows
are supported.

To specify the corresponding labels, e.g. phoneme or senone labels, a configuration
block should be used that specifies the following parameters:

• mlfFile: an HTK-style MLF file that contains the labels for all utterances
specified in the SCP file.

• labelDim: the total cardinality of the label set

• labelMappingFile: a list of all the labels seen in the MLF file

Note that multiple inputs and outputs can be specified using additional reader
blocks for either features read from files listed in an SCP file or labels read from
an MLF file. For example, in a multi-task learning scenario, where the network
was predicting both speaker identity and senone label, the user would specify an
additional block that includes an MLF file that contains labels corresponding about
speaker identity. Similarly, for a network with multiple inputs, e.g. both MFCC
and PLP features, an additional feature block would be used.

For recurrent structures, such as an RNN or an LSTM, there are additional
configuration options in the HTKMLFReader

• frameMode: true or false, whether the reader should randomize the data at
the frame level or the utterance level. Setting frameMode to true is the de-
fault and is appropriate for training networks without any temporal connec-
tions. For networks that are designed to learn sequential information, e.g.
RNN, frameMode should be set to false, which means utterances are ran-
domized but proper sequence is maintained within an utterance. Note that
this only works with the “blockRandomize” read method.
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• nbruttsineachrecurrentiter: specifies the number of utterances to process to-
gether for efficient training of networks with recurrent structures. The default
is 1.

• truncated: true or false

It is important to note that there are some small differences between the standard
SCP and MLF files used in HTK and the ones used in CNTK.

Most notably, the MLF file must contain the actual symbols used for classifica-
tion. For continuous speech recognition, this typically means labels corresponding
to the senones (physical HMM states). However, HVite typically generates an MLF
during forced alignment that includes only the logical HMM state names. Thus, to
use this MLF in CNTK, either the MLF must be post-processed to replace the log-
ical state names with thee corresponding senone labels, or HVite must be modified
so that it writes the senone labels directly.

The SCP files processed by the HTKMLFReader can be one of two varieties:
either the standard format, where each line corresponds to a physical feature file, or
the aliased format, where each line contains a logical name and refers to a segment
of a possibly larger physical file, defined by start and end frames. The logical name
is used to identify the corresponding labels in the MLF file. Even if the files are
stored individually, as in the first case, the aliased format must always be used with
the blockRandomize read method, as it uses the information about the starting and
ending frames in the SCP file to determine the utterance lengths without having
to open the files themselves. In this case, the start frame should be 0 and the
ending frame should be set appropriately based on the length of the utterance. In
addition, for multiple inputs and/or outputs, the aliased format should also be used
so that all SCP files and MLF files have their logical names in common. If the
rollingWindow read method is used instead of blockRandomize, then the start and
end frame information may be omitted.

Here are example snippets of SCP and MLF files for the TIMIT corpus for
appropriate for a network with 2 feature inputs (in this case, MFCC and PLP fea-
tures) and 1 output corresponding to phoneme states. The SCP file for the MFCC
features contains entries such as these.

train-dr1-fcjf0-si1027.mfc=//hostname/data/TIMIT/mfc/train/
dr1/fcjf0/train-dr1-fcjf0-si1027.mfc[0,306]

train-dr1-fcjf0-si1657.mfc=//hostname/data/TIMIT/mfc/train/
dr1/fcjf0/train-dr1-fcjf0-si1657.mfc[0,281]

train-dr1-fcjf0-si648.mfc=//hostname/data/TIMIT/mfc/train/
dr1/fcjf0/train-dr1-fcjf0-si648.mfc[0,359]

The SCP file for the PLP features is be similar but point to different physical
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files. Note that the logical root name in both SCP files is the same.

train−dr1−fcjf0−si1027.plp=//hostname/data/TIMIT/plp/train/dr1/fcjf0/train−dr1−fcjf0−si1027.
plp[0,306]

train−dr1−fcjf0−si1657.plp=//hostname/data/TIMIT/plp/train/dr1/fcjf0/train−dr1−fcjf0−si1657.
plp[0,281]

train−dr1−fcjf0−si648.plp=//hostname/data/TIMIT/plp/train/dr1/fcjf0/train−dr1−fcjf0−si648.plp
[0,359]

The MLF file also shares the logical name with both SCP files. In this

#!MLF!#
"train-dr1-fcjf0-si1027.rec"
0 200000 h#_s2 -136.655975 h# -589.680481 h#
200000 400000 h#_s3 -145.780716
400000 800000 h#_s4 -307.243774
800000 1200000 q_s2 -349.529327 q -897.429504 q
1200000 1500000 q_s3 -280.568817
1500000 1800000 q_s4 -267.331390
1800000 1900000 iy_s2 -76.825096 iy -673.892883 iy
1900000 2400000 iy_s3 -305.832458
2400000 2800000 iy_s4 -291.235352

Finally, it is important to note that in most speech recognition applications,
the continuous-valued features are used as the inputs discrete categorical labels are
used as the output. However, the HTKMLFReader just associates data with node
names and is agnostic as to how this data is used. For example, an appropriate
MLF file of speaker identity labels could be used to generate a one-hot vector of
speaker identity features as an input to the network.

3.4.3 LMSequenceReader

LMSequenceReader is a reader that reads text string. It is mostly often used for
language modeling tasks. An example of its setup is as follows

reader=[
readerType="LMSequenceReader"
randomize=false
nbruttineachrecurrentiter=10
unk="<unk>"
wordclass="$DataDir$\wordclass.txt"
file="$DataDir$\penntreebank.train.txt"

labelIn=[
labelDim=10000
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beginSequence="</s>"
endSequence="</s>"

]

]

In this example, the LMSequenceReader has following parameters:

• randomize: it is either None or Auto. This specifies the mode of whether
doing sentence randomization of the whole corpus.

• nbruttsineachrecurrentiter : this specifies the limit of the number of sen-
tences in a minibatch. The reader arranges same-length input sentences, up
to the specified limit, into each minibatch. For recurrent networks, trainer
resets hidden layer activities only at the begining of sentences. Activities of
hidden layers are carried over to the next minibatch if an end of sentence is
not reached. Using multiple sentences in a minibatch can speed up training
processes.

• unk : this specifies the symbol to represent unseen input symbols. Usually,
this symbol is “<unk>”. Unseen words will be mapped to the symbol.

• wordclass : this specifies the word class information. This is used for class-
based language modeling. An example of the class information is below.
The first column is the word index. The second column is the number of
occurances, the third column is the word, and the last column is the class id
of the word.

0 42068 </s> 0
1 50770 the 0
2 45020 <unk> 0
3 32481 N 0
4 24400 of 0
5 23638 to 0
6 21196 a 0
7 18000 in 1
8 17474 and 1

• file : the file contains text strings. An example is below

</s> pierre <unk> N years old will join the board as a
nonexecutive director nov. N </s>

</s> mr. <unk> is chairman of <unk> n.v. the dutch
publishing group </s>
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In this example you can also notice one sub-blocks named labelIn.

• labelIn: the section for input label. It contains the following setups

– beginSequence – the sentence beginning symbol

– endSequence – the sentence ending symbol

– labelDim – the dimension of labels. This usually means the vocabulary
size.

3.4.4 LUSequenceReader

LUSequenceReader is similar to SequenceReader. It however is used for language
understanding tasks which have input and output strings that are different. An
example of setting up LUSequenceReader is as follows

reader=[
readerType="LUSequenceReader"
randomize="none"
wordContext=0:1:2

nbrUttsInEachRecurrentIter=10

unk="<unk>"
wordMap="$DataDir$\inputmap.txt"
file="$DataDir$\atis.train.IOB"

labelIn=[
useWordMap=true

beginSequence="BOS"
endSequence="EOS"
token="$DataDir$\input.txt"

]

labels=[
beginSequence="O"
endSequence="O"
token="$DataDir$\output.txt"

]
]

In this example, the LUSequenceReader has following parameters:

• wordContext: this specifies a context window. For example, wordContext=0:1:2
specifies a context window of 3. In this context window, it reads input at a
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current time, the next time and the time after the next time. Another exam-
ple would be wordContext=0:-1. In such case, LUSequencReader reads a
context window of 2 that consist of the current input and the immediate last
input. .

• randomize: it is either None or Auto. This specifies the mode of whether
doing sentence randomization of the whole corpus.

• nbrUttsInEachRecurrentIter : this specifies the limit of the number of sen-
tences in a minibatch. The reader arranges same-length input sentences, up
to the specified limit, into each minibatch. For recurrent networks, trainer
resets hidden layer activities only at the begining of sentences. Activities of
hidden layers are carried over to the next minibatch if an end of sentence is
not reached. Using multiple sentences in a minibatch can speed up training
processes.

• unk : this specifies the symbol to represent unseen input symbols. Usually,
this symbol is “<unk>”.

• wordMap: this specifies a file that maps inputs to other inputs. This is useful
if the user wants to map some inputs to unknown symbols. An example of
the word mapping file is as follows

buy buy
trans <unk>

• file : the file contains input and its labels. The last column is the label, and
the other columns contain inputs. An example of training file is below.

BOS O
flight O
from O
charlotte B-fromloc.city_name
to O
las B-toloc.city_name
vegas I-toloc.city_name
EOS O

In this example you can also notice two sub-blocks named features and labels.

• labelIn: the section for input label. It contains the following setups
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– useWordMap – [Ture, False] specifies if using word map to map input
words to other input words.

– beginSequence – the sentence beginning symbol

– endSequence – the sentence ending symbol

– token – token file contains a list of input words. Their orders are not
important.

• labels: the section for output label.

– token – token file contains a list of output labels. Their order is not
important as long as the tokens are unique.

3.5 Top-Level Commands

Besides the train command, CNTK supports a list of other top-level commands.
We list all the top-level commands and corresponding parameters in this section.

3.5.1 Train Command

This command asks CNTK to train a model. The related parameters are:

• reader – the reader configuration block used to determine how to load input
data. We have covered this parameter block in previous sections.

• SGD – the SGD training setup.

• NDLNetworkBuilder – the NDL network builder configuration block.

• simpleNetworkBuilder – the simple network builder configuration block.

• cvReader – (optional) the reader configuration block for cross-validation
data

• makeMode – if true (default) the training will continue from whatever epoch
interrupted. If false the training will restart from scratch.

• numMBsToShowResult – indicates after how many minibatches the inter-
mediate results should be shown.
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3.5.2 Adapt Command

This command adapts an already trained model using KL divergence regulariza-
tion. It is advised that all other adaptations should be carried out using MEL. The
adapt command is very similar to the train command except that it carries two more
parameters:

• originalModelFileName – the file name of the model that will be adapted.

• refNodeName – the name of the node in the computational network which
will be used for KL divergence regularization.

3.5.3 Test or Eval Command

This command evaluate/test a model for accuracy, usually with a test dataset. The
related parameters are

• reader – the reader configuration block to read the test data.

• modelPath – the path to the model to be evaluated.

• minibatchSize – the minibatch size to use when reading and processing the
dataset.

• epochSize – the size of dataset. Default is 0. The entire dataset will be
evaluated if it’s set to 0.

• numMBsToShowResult – indicates after how many minibatches the inter-
mediate results should be shown.

• evalNodeNames – an array of one or more node names to evaluate.

3.5.4 CV

This command evaluates a series of models from different epochs on a development
(or cross validation) set and displays the information of the best model. Besides
the parameters used for the test command, this command also use the parameters

• crossValidationInterval – the array of 3 integers identifying the starting epoch,
epoch increment and final epoch to evaluate. For example, 3:2:9 means the
models 3,5,7, and 9 will be evaluated.

• sleepTimeBetweenRuns – how many seconds to wait between runs. This is
needed only if your GPU is too hot.
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3.5.5 Write Command

This command writes the value of an output node to a file. The related parameters
are

• reader – the reader configuration block to read the input data.

• writer – the writer configuration block to determine how to write the output
data. If this value is not specified the outputPath parameter will be used.

• minibatchSize – the minibatch size to use when reading and processing the
dataset.

• epochSize – the size of dataset. Default is 0. The entire dataset will be
evaluated if it’s set to 0.

• modelPath – the path to the model to be used to compute the output.

• outputPath – the path to the file to write the output in a text format. If the
writer block exists this parameter will be ignored. Either outputPath or writer
must exist.

• outputNodeNames – an array of one or more output node names to be written
to a file.

3.5.6 Edit Command

This command executes a model editing language (MEL) script. We will describe
MEL in detail in Chapter 4. Here we list the associated parameter blocks.

• editPath – the path to the MEL script to be executed.

• ndlMacros – the path to the NDL macros file that will be loaded and used in
the MEL script.

3.5.7 SVD Command

This command conducts SVD decomposition for learnable parameters. For exam-
ple:

svd=[
action="SVD"
modelPath="train\lstm.model.67"
outputModelPath="train\lstm.model.svd"
SVDConfig="nodeConfigs"

]
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Here we list the associated parameter blocks.

• modelPath – specifies where to load the initial model

• outputModelPath – specifies where to save the revised model

• SVDConfig – a config file which specifies how the SVD is performed for
different groups of nodes. This config is in a two-column format:

<NodeNameRegex> <float>

The first column is a regular expression which will match the node name in
one group. The second column is a float indicating what percentage of SVD-
energy will be kept after SVD, where SVD-energy is defined as the sum of
singular values. For example, the config

LSTMoutput[1-3].Wx[ifco] 0.4
LSTMoutput[1-3].Wh[ifco] 0.6

will cause a more aggressive SVD (0.4) decomposition for the non-recurrent
connections (from x to i,f,c,o gates) in LSTM and less aggressive SVD de-
composition for recurrent connections (from h to i,f,c,o gates), where the
parameter names are defined in the NDL.

3.5.8 Dumpnode Command

This command dumps the information of node(s) to an output file, which can also
be accomplished in MEL with greater control. The related parameters are:

• modelPath – the path to the model file containing the nodes to dump.

• nodeName – the name of the node to be written to a file. If not specified all
nodes will be dumped.

• outputFile – the path to the output file. If not specified a file name will be
automatically generated based on the modelPath.

• printValues – determines whether to print the values associated with a node
if the node’s values are persisted in the model. Default is true.
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3.5.9 WriteWordAndClass Command

This command reads the text training data, counts the number of occurrences of
each each word in the training set, sorts the words in the descending order of the
counts, gives each word a unique id, assign each word to a class, and generates
a four column vocabulary file and a word-to-id mapping file to be used by the
LMSequenceReader to train class-based language models. The related parameters
are:

• inputFile – the path to the text training file.

• outputVocabFile – the name of the generated four-column vocabulary file.
The first column is the word id, the second column is the count of the word,
the third column is the word, and the fourth column is the class id.

• outputWord2Cls – the path to the generated word-to-class mapping file.

• outputCls2Index – the path to the generated class-to-wordId mapping file.

• vocabSize – the desired vocabulary size.

• nbrClass – the desired number of classes .

• cutoff – the cutoff count. When a word’s count is below or equal to this value
the word will be treated as <unk>. Default is 2. Note that this parameter is
used only if the desired vocabulary size is larger than the actual number of
words exist in the training set.

3.5.10 CreateLabelMap Command

Often it is easy to manually craft the label mapping file. Sometimes, however, you
would prefer to have the label mapping file generated automatically which is the
purpose of the CreateLabelMap command. Currently UCIFastReader is the only
reader that supports this action. The related parameters are

• section – the parameter block name (usually a train block) which has the
reader sub-block that will be used to generate the label mapping file. The
generated label mapping file will be saved to the labelMappingFile specified
in the reader sub-block of this parameter block.

• minibatchSize – the minibatch size to use when creating the label mapping
file.
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3.5.11 DoEncoderDecoder Command

Neural networks can be used to form a chain of networks. The first several net-
works can work as encoders and the following networks can serve as decoders. A
special node, PairNetworkNode, is used in each network to serve a socket to be
connected by other networks. The related parameters are

• section – the encoderReader and decoderReader are the readers for encoder
and decoder. Similary for encoderCVReader and decoderCVReader for val-
idation set.

• encoderNetworkBuilder and decoderNetworkBuilder: These specify the sim-
ple network builder to used.

3.6 Plot Command

This command loads a given computation network and describes the network topol-
ogy (usually a DAG) using the DOT (http://www.graphviz.org/doc/info/lang.html)
language. It can also optionally call a third-part tool (http://www.graphviz.org/Documentation/dotguide.pdf)
to render the network topology. Note that many DOT rendering tools are optimized
for DAG, and the rendered graph becomes quite messy if the network structure is
non-DAG. The non-DAG structure is usually caused by the use of delay node. In
this case, this command will treat all the delay nodes as leaf nodes.

The related parameters of this command are:

• modelPath – the path to the computation network.

• outputDOTFile – the path to the output DOT file. If user does not specify it,
${modelPath}.dot will be assumed.

Optionally, if uses want to convert the dot description to a figure, he or she needs
to specify the following parameters:

• outputFile – the path to the output figure.

• renderCmd – A string indicates how the third party tool is used to convert
from a DOT file to a figure. For example, if graphviz is used, the RenderCmd
can be written as

RenderCmd="d:\Tools\graphviz\bin\dot.exe -Tjpg <IN> -o<
OUT>"
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where the plot command will substitute “<IN> “ with the outputDOTFile
command parameters and “<OUT>” with the outputFile command parame-
ters; -Tjpg indicates a jpg file format is selected.

Here is a complete example:

command=topoplot

topoplot=[
action="plot"
modelPath="train\lstm.model.0"
outputdotFile="train\lstm.model.dot" # this specifies the

dot file to output
# if user does not specify this, it will be ${modelPath}.

dot
outputFile="train\lstm.model.jpg" # this specifies the

rendered image
renderCmd="d:\Tools\graphviz\bin\dot.exe -Tjpg <IN> -o<OUT

>"
# if RenderCmd is specified, CNTK will call the plot

command after replacing
# <IN> with ${outputdotFile} and <OUT> with ${outputfile}

]

3.7 ConvertDBN Command

This command is used to convert a model generated by Microsoft’s dbn.exe tool
to a CNTK model. This command is useful when you want to compare the per-
formance of these two tools (dbn.exe only supports simple fully connected deep
neural networks), port existing models trained with dbn.exe to CNTK, or if you
want to use the RBM pre-training which is available in dbn.exe but not in CNTK
right now. The related parameters are

• modelPath – the full path of the generated CNTK model.

• dbnModelPath – the full path of the model to be converted.

3.8 Additional Top-Level Configurations

Besides commands, there are several top-level configurations that you can set.
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3.8.1 Stderr

All logging information in CNTK is sent to standard error, and will appear on the
console screen. You can redirect the logging information to a file with the stderr
parameter. The value of the stderr parameter defines the folder and the prefix of the
log file. The suffix is determined by the command block executed. For example, if
you set

stderr="c:\cntk\log\cntk"

and the command block mnistTrain is to be executed then the full log file name
will be c:\cntk\log\cntk_mnistTrain.log. It is important to note that this file is over-
written on subsequent executions if the stderr parameter and the command being
run are identical.

3.8.2 DeviceId

CNTK supports CPU and GPU computation. Users can determine what device to
use by setting the deviceId papameter. The possible values are

• auto: choose the best device available.If multiple GPUs are available, it will
choose the fastest, least busy GPU. If no usable GPUs can be found CPU
will be used.

• cpu or -1: use the CPU for all computation

• a non-negative integer: use the GPU identified by this number to carry out
all computation.

• all : use all the available GPU devices (currently this flag is not supported)

3.8.3 Precision

The precision of the floating point values determines the tradeoff between the nu-
merical accuracy and the training and testing speed. In CNTK the precision is
specified at the top-level as

precision="float"

The valid values are float (default) and double. For most experiments you
should use float since it’s significantly faster, esp. when running under GPUs. To
run gradient check you should set precision to double.
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3.8.4 NumCPUThreads

The NumCPUThreads parameter determines the maximum CPU threads used for
CPU math operations. In CNTK it is specified at the top-level as

NumCPUThreads=4

By default the value is 0, which means using what ever number of threads deter-
mined by MKL, ACML, or OpenMP. If a positive number is specified, the number
of threads will not be larger than the value specified and the number of hardware
concurrency. If a negative number is specified, the actual number of thread will be
the sum of the number of hardware concurrency and this value floored at 1.

3.8.5 TraceLevel

The traceLevel parameter is uniformly used by the code in CNTK to specify how
much extra output (verbosity) is desired as in

traceLevel=0 # larger values mean more output

The default value is 0 and specifies minimal output. The higher the number the
more output can be expected. Currently 0 (limited output), 1 (medium ouput) and
2 (verbose output) are the only values supported.

3.9 Advanced Command Line Parsing Rules

Here we describe CNTK command line parsing rules. As described above, CNTK
consists of a number of components to complete a task. Most of these components
need some configuration information available in order to function, and these con-
figuration parameters are provided through configuration files in CNTK.

Configuration files are collections of name-value pairs. The configuration data
can be one of the following types:

• Simple: a single value is assigned to the configuration parameter. For exam-
ple, deviceId=auto.

• Array: a configuration parameter is assigned an array of values which need
not be of a uniform type. ’:’ is the default separator for arrays. The separator
may be changed by enclosing the array values in parenthesis and placing the
new separator character immediately following the open parenthesis. The
’*’ character allows a particular value to be repeated multiple times in the
array. For example, minibatchSize=256:512:512:512:1024 equals to mini-
batchSize=256:512*3:1024.
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• Set: parameter sets contain sets of configuration parameters of any type.
Parameter sets can be nested. The default separator for parameter sets is
’;’ if multiple items are included on one line. Line separators also serve as
separators for items. For example,

block1=[id=1;size=256]

block2=[
subblock=[string="hi";num=5]
value=1e-10
array=10:"this is a test":1.25

]

In CNTK, configuration files are organized in a hierarchical fashion. The actual
data values are not evaluated until a CNTK component requests the value. When a
value is requested by a component, CNTK will search inside the component block
first. If the value is not found, it will continue looking in the parent and grandparent
parameter set until the parameter is found, or the top level of the configuration
hierarchy is reached without a match. This allows the share of the same parameter
values easier across different blocks.

As we mentioned earlier, to run CNTK you need to specify the configuration
file in the command line as

cntk configFile=yourExp.config

This will load the requested configuration file, and execute any command block
listed in the command parameters in the configuration file.

3.9.1 Commands and Actions

There must be a top-level command parameter, which defines the commands (sep-
arated with ’:’) that will be executed in the configuration file. Each command
references a command block in the file, which must contain an action parameter
defining the operation that block will perform. For example the following com-
mand will execute the mnistTrain block, which executes the train action, followed
by the mnistTest block, which evaluates the model.

command=mnistTrain:mnistTest

mnistTrain=[
action="train"
...

]



CHAPTER 3. COMPUTATIONAL NETWORK TOOLKIT 83

mnistTest=[
action="eval"
...

]

3.9.2 Configuration Overloads In the Command Line

It is common to have a configuration that can be used as a base configuration, and
modify only a few parameters for each experimental run. This can be done in a
few different ways, one of which is to override settings on the command line. For
example, to override the model file path, one can simply modify the command line
as follows:

cntk configFile=yourExp.config stderr="c:\temp\newpath"

This will override the current setting for stderr, which is defined at the root
level of the configuration file, with the new value. If a parameter inside a command
block needs to be modified, the block also needs to be specified. For example, I
can change the minibatchSize for an experiment in the command line as

cntk configFile=yourExp.config mnistTrain=[minibatchSize
=256]

or modify the data file used for an experiment as

cntk configFile=yourExp.config mnistTrain=[reader=[file="
mynewfile.txt"]]

3.9.3 Layered Configuration Files

Instead of overriding some parts of a configuration file using command line pa-
rameters, one can also specify multiple configuration files, where the latter files
override the earlier ones. This allows a user to have a master configuration file,
and then specify, in a separate configuration file, which parameters of the master
they would like to override for a given run of CNTK. This can be accomplished by
either specifying a ’+’ separated list of configuration files, or by using the "config-
File=" tag multiple times. The following are equivalent.

cntk configFile=yourExp1.config+yourExp2.config
cntk configFile=yourExp1.config configFile=yourExp2.config

If yourExp2.config only contains the string "mnistTrain=[reader=[file=mynewfile.txt]]",
then both of these commands would be equivalent to:
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cntk configFile=yourExp1.config mnistTrain=[reader=[file="
mynewfile.txt"]]

Note that the value of a variable is always determined by the last time it is
assigned. It is also possible to mix command-line parameters, and layered config-
uration files, in arbitrary combinations. For example,

cntk configFile=yourExp1.config+yourExp2.config var1=value
configFile=yourExp3.config

would process these configuration parameters in the order they appear on the com-
mand line and whatever value assigned last is the value used.

In addition being able to specify multiple configuration files at the command
line, a user can include one configuration file within another. For example, if the
first line of yourExp2.config was

include=yourExp1.config

then simply running

cntk configFile=yourExp2.config

would be equivalent to running

cntk configFile=yourExp1.config+yourExp2.config

where in this latter case, yourExp2.config doesn’t contain the include statement.
Note that these include statements can appear anywhere inside a configuration file;
wherever the include statement appears, that is where the specified configuration
file will be included. Including a configuration file is equivalent to pasting the
contents of that file at the location of the include statement. Include statements are
resolved recursively (using a depth-first search), meaning that if yourExpA.config
includes yourExpB.config, and yourExpB.config includes yourExpC.config, then
the full chain will be resolved, and yourExpC.config will effectively be included in
yourExpA.config. If a configuration file is included multiple times (eg, ’A’ includes
’B’ and ’C’, and ’B’ also includes ’C’), then it will effectively only be included the
first time it is encountered.

3.9.4 Stringize Variables

While layered configuration files allow users to reuse configuration files across
experiments, this can still be a cumbersome process. For each experiment, a user
might have to override several parameters, some of which might be long file paths
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(eg, ’stderr’, ’modelPath’, ’file’, etc). The "stringize" functionality can make this
process much easier. It allows a user to specify configuration like the following:

command=SpeechTrain

stderr="$Root$\$RunName$.log"

speechTrain=[
modelPath="$Root$\$RunName$.cn"

SGD=[
reader=[
features=[
type="real"
dim="$DataSet1_Dim$"
file="$DataSet1_Features$"
]

]
]

]

Here, "Root","RunName", "DataSet1_Dim", and "DataSet1_Features" are vari-
ables specified elsewhere in the configuration (at a scope visible from the point at
which they are used). When interpreting this configuration file, the parser would
replace every string of the form "$VarName$" with the string "VarValue", where
"VarValue" represents the value of the variable called "VarName". The variable res-
olution process is recursive; for example, if A=$B$, B=$C$, and C=HelloWorld.txt,
then A would be resolved as "HelloWorld.txt". Please make sure there is no refer-
ence loop in your configuration file. Otherwise the parser will go into infinite loop
at this moment.

Notice that because it is equivalent for a user to specify the value of a vari-
able in a configuration file vs. at the command line, the values for these vari-
ables can be specified in either location. Recall that the value of a variable is
determined by the last time it is assigned, whether that happens to be in a con-
figuration file, or on the command line. Thus, if "Root" is defined in config1.txt,
but overridden at the command-line, then the value specified at the command-line
would be the one used to resolve instances of $Root$ in configFile1.txt. One use-
ful feature is that if ’stderr’ or ’modelPath’ point to directories which do not ex-
ist, these directories will be created by CNTK; this allows you to specify some-
thing like: "stderr=$Root$\$RunName$\$RunName$.log", even if the directory
"$Root$\$RunName$" doesn’t exist.
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3.9.5 Default, Repeated Values, and Comments

Most parameters in configuration files have a default value which will be used if
no configuration value is specified. If there is no default value and the value cannot
be found in a search, an exception will be displayed and the program will exit.

If a parameter name is specified more than once, the last value set to that value
is the one that will be maintained. The only exception to this is in parameter sets,
which are surrounded by ’[’ square braces ’]’, in these cases the values inside the
braces are considered to be a parameter set, and will be added to the currently
existing parameter set. For example:

params=[a=1;b=2;c=3]
params=[c=5;d=6;e=7]

is effectively equal to:

params=[a=1;b=2;c=5;d=6;e=7]

Note that this append processing is NOT used for array elements, and the entire
array will be replaced if it is set multiple times.

The ’#’ character signifies the beginning of a comment, everything that occurs
after the ’#’ is ignored. The ’#’ must be preceded by whitespace or be at the begin-
ning of the line to be interpreted as a comment. The following is valid comment

stderr="c:\cntk\log\cntk" # "_mnistTrain_mnistTest.log"

The following is an example of a value that will not be interpreted as a com-
ment. It sets a parameter “var” to infinity as the ’#’ in ’1#INF’ is not a comment
marker

var=1#INF



Chapter 4

Advanced Setups in
Computational Network Toolkit

4.1 Network Definition Language

The network description language (NDL) provides a simple yet powerful way to
define a network in a code-like fashion. It contains variables, macros, and other
well understood concepts and allows users of CNTK to define any computational
network architecture they want.

4.1.1 Basic Concepts

The example NDL script below describes a one-hidden-layer DNN.

#Variables
SDim=784
HDim=256
LDim=10

#Inputs
features=Input(SDim, 1)
labels=Input(LDim, 1)

#Parameters
W0=Parameter(HDim, SDim)
B0=Parameter(HDim, 1)
W1=Parameter(LDim, HDim)
B1=Parameter(LDim, 1)

#Computation

87



CHAPTER 4. ADVANCED SETUPS IN COMPUTATIONAL NETWORK TOOLKIT88

Times1=Times(W0, features)
Plus1=Plus(Times1, B0)
RL1=RectifiedLinear(Plus1)

Times2=Times(W1, RL1)
Plus2=Plus(Times2, B1)

#Training Criterion
CE=CrossEntropyWithSoftmax(labels, Plus2)

#Test Objective Function
ErrPredict=ErrorPrediction(labels, Plus2)

#Special Nodes
FeatureNodes=(features)
LabelNodes=(labels)
CriterionNodes=(CE)
EvalNodes=(ErrPredict)
OutputNodes=(Plus2)

We will introduce the basic concepts such as variables, parameters, inputs, and
training criteria using this example.

4.1.1.1 Variables

SDim=784
HDim=256
LDim=10

The first thing you will notice are the variables: SDim, HDim and LDim. Vari-
ables are defined in NDL when they appear on the left of an equal sign. From that
point on that variable name will be associated with the value it was assigned. A
variable can contain a matrix or scalar value. Variables are immutable, and assign-
ing new values to an existing variable is not supported.

Variable names may be any alphanumeric sequence that starts with a letter and
are case-insensitive. Any name that is also a function (operator) name is a reserved
word and cannot be used for a variable. The special node names FeatureNodes,
LabelNodes, CriterionNodes, EvalNodes, OutputNodes are also reserved and may
not be used as variable names.

The variables SDim, HDim and LDim are set to scalar numeric values in this
example and are used as parameters in the NDL functions. More specifically,
SDim, HDim and LDim are the sizes of input, hidden, and output layers in this
example and assigned the values 784, 256, and 10, respectively. The input and
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output layer sizes are determined by the task while the hidden layer size can be
chosen by the users depending on their needs.

4.1.1.2 Inputs

features=Input(SDim)
labels=Input(LDim)

Inputs are used to represent input data and labels associated with the samples.
Input is a special function. They are represented as InputNodes internally and are
not saved as part of the CN model. In this example, the features input will have the
dimensions of the input data (SDim), and the labels input will have the dimensions
of the labels (LDim). The variables chosen here are for convenience and could be
any valid variable name.

4.1.1.3 Parameters

B0=Parameter(HDim, 1)
W0=Parameter(HDim, SDim)
W1=Parameter(LDim, HDim)
B1=Parameter(LDim, 1)

Parameters are matrices that constitute the learned model upon completion of
training. They are represented as LearnableParameterNodes internally and are
saved as part of the CN model. The model parameters transform the input data
into the desired output data and are updated as part of the learning process.

In this example. CNTK will train W0 and W1 the weight matrices, and B0
and B1 the bias matrices. Parameter matrices are always represented as two-
dimensional matrices internally. If only one dimension is given the other dimen-
sion is assumed to be 1. By default parameters are initialized with uniform random
numbers between -0.5 and 0.5, but other options exist (see Section 4.1.4).

4.1.1.4 Functions

Times1=Times(W0, features)
Plus1=Plus(Times1, B0)
RL1=RectifiedLinear(Plus1)

Functions describe computation steps. Functions are called using a syntax sim-
ilar to most programming languages. The function name is followed by parenthesis
which contains the comma separated parameter list. Each function returns a single
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value, which is identified by a variable. The complete list of functions can be found
in Section 4.1.4.

The hidden layer in this example involves three computation steps: It first gets
the product of the weight matrix W0 and the features matrix; then gets the excita-
tion by adding the product to the bias; and finally applies the activation function,
in this case RectifiedLinear(), to the excitation. Internally the operators Times(),
Plus() and RectifiedLinear() are represented as computation nodes TimesNode,
PlusNode, and RectifiedLinearNode, respectively. These Computation nodes are
saved as part of the CN model but their values are not.

4.1.1.5 Training and Testing Criteria

#Training Criterion
CE=CrossEntropyWithSoftmax(labels, Plus2)

#Test Objective Function
ErrPredict=ErrorPrediction(labels, Plus2)

Each CN can have multiple root nodes used for different purposes. In this ex-
ample, the training and testing criteria are different. We use the operator CrossEn-
tropyWithSoftmax() to compute the training criterion and the operator ErrorPredic-
tion() to compute the testing criterion. These operators are internally represented
as computation nodes CrossEntropyWithSoftmaxNode and ErrorPredictionNode
with names CE and ErrPredict, respectively.

4.1.1.6 Special Nodes

FeatureNodes=(features)
LabelNodes=(labels)
CriterionNodes=(CE)
EvalNodes=(ErrPredict)
OutputNodes=(Plus2)
NodesReqMultiSeqHandling=(CE)

After defining the network, it’s important to let CNTK know what the special nodes
are in the network. For example, CNTK needs to know which input nodes are
features and labels. It also needs to know the default output nodes, evaluation nodes
and training criteria nodes. Note here the specification of the nodes that require
special handling (NodesReqMultiSeqHandling) when the network is evalauted or
trained with multiple sequences, e.g., when the network itself is an RNN or the
model is trained with the sequence-level criterion. Since in these cases multiple
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sequences will be stitched together to improve the speed and special handling is
needed for, e.g., the criterion node, to reset the RNN states at the right time and
to mask out the samples when the features/labels are missing. CNTK supports
multiple inputs and outputs which can be represented by comma separated variable
names surrounded by parentheses.

These special nodes can be specified in two different ways, the node arrays, or
by use of special tags we will discuss later. If both methods are used the values are
combined.

4.1.1.7 Comments:

to be interpreted as a comment. The following are valid comments:

#Test Objective Function
ErrPredict=ErrorPrediction(labels, Plus2) # classification

error

# the following variable is set to infinity and
# the # in 1#INF is not interpreted as a comment marker
var = 1#INF

4.1.2 Macros

While creating a network using the syntax shown above is not all that difficult, it
can get wordy when creating deep neural networks with many layers. To alleviate
this problem, common definitions can be combined into macros.

4.1.2.1 Defining Macros

Macros can be defined as a one line function, or as a block of code. For example,
the single-line macro

RFF(x1, w1, b1)=RectifiedLinear(Plus(Times(w1,x1),b1))

defines the three steps involved in the hidden layer computation in the previous
section, all in one line. When the functions calls are nested they will be evaluated
from the innermost nested function call to the outermost.

A macro can also be defined as a block of code, for example

FF(X1, W1, B1)
{
T=Times(W1,X1)
FF=Plus(T, B1)
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}

defines the feed forward computation without the activation function. It shows an
alternate format of a macro. Semicolons are not required, but can be used if desired.
The variables and parameters used inside the macros are local to the macro but are
accessible externally with dot operators we will discuss later. The return value of
a macro is defined by a local macro variable that has the same name as the macro.
In this case the FF() macro’s return value is the FF local variable. If no variable
matches, the last variable in the macro will be returned.

The macro

BFF(in, rows, cols)
{
B=Parameter(rows)
W=Parameter(rows, cols)
BFF = FF(in, w, b)

}

shows how parameters are declared within a macro. As in this example, a macro
may call another macro. However recursion (i.e., calling itself) is not supported.

The macro

RBFF(input,rowCount,colCount)
{
F = BFF(input, rowCount, colCount);
RBFF = RectifiedLinear(F);

}

calls the previous macro and adds the RectifiedLinear() activation function. The
macro

SMBFF(x,r,c, labels)
{
F = BFF(x,r,c);
SM = CrossEntropyWithSoftmax(labels, F)

}

computes the output layer value and the cross entropy training criterion. Since no
variable matches the name of the macro, the last variable defined in the macro, SM
in this case, is used as a return value.

4.1.2.2 Using Macros

The following example uses the macros defined above. It describes the same one-
hidden-layer network discussed in Section 4.1.1 but is much simpler and easier to
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understand because of the use of macros. One new feature shown in this network
definition is the access to macro-region variables. ErrorPrediction() needs to ac-
cess an intermediate result from SMBFF before the CrossEntropyWithSoftmax() is
applied. Although the needed variable is local to the macro, it can be accessed via
the dot syntax. The return value of the macro is CE, so CE.F can be used to access
the local variable F defined in the macro. This does requires the user to know the
names used in the macro, so having all macro definitions available is important.
In the single line version of macros, there are no user defined variable names, so
this feature cannot be used. Since macros can be nested, dot names can be several
layers deep if necessary.

# Sample, Hidden, and Label dimensions
SDim=784
HDim=256
LDim=10

#Inputs
features=Input(SDim)
labels=Input(LDim)

# Layer operations
L1 = RBFF(features, HDim, SDim)
CE = SMBFF(L1, LDim, HDim, labels)
Err=ErrorPrediction(labels, CE.F)

4.1.3 Optional Parameters

Optional Parameters are a feature that allows additional parameters to be speci-
fied to a function. While optional parameters can be specified for any function or
macro, they are limited to constant values. In addition, the underlying function
must support the passed optional parameters, or there is no effect on the network.
When optional parameters are used on a macro, the macro must define local vari-
ables that match the optional parameter name and value.

4.1.3.1 Parameter initialization

One common use of these optional parameters is to define how parameters will be
initialized. In the example

B0=Parameter(HDim, 1, init=zero)
W0=Parameter(HDim, SDim, init="uniform")
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the Bias matrix will be zero initialized, and the weight matrix will be initialized
with uniform random numbers. Please consult Section 4.1.4 to find which func-
tions accept optional parameters

4.1.3.2 Tagging special values

As an alternate to providing an array of special nodes that are used as features,
labels, criteria, etc, optional parameters can be used. So instead of using

FeatureNodes=(features)
LabelNodes=(labels)
CriterionNodes=(CE)
EvalNodes=(ErrPredict)
NodesReqMultiSeqHandling=(CE)

we can tag these nodes as they are defined.

features=Input(SDim, 1, tag="feature")
labels=Input(LDim, 1, tag="label")
CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")
Err=ErrorPrediction(labels, CE.F, tag="eval")
CE = SMBFF(L3, LDim, HDim, labels, tag="multiSeq")

The acceptable tag names correspond to the special node types and are as fol-
lows:

• feature: feature input.

• label: label input

• criterion: training criteria

• eval: evaluation node

• output: output node

4.1.4 NDL Functions

This section describe the currently implemented NDL functions (operators). These
operations are implemented as computation nodes internally and are discussed in
Chapter 2. As CNTK is expanded, additional functions become available. In the
following discussion named optional parameters are optional parameters that are
specified by an augment name. For example, if cols is a named optional parameter,
we need to call the function as

Function(rowsValue, cols=colsValue)
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4.1.4.1 InputValue or Input

Defines input data for the network. Inputs are read from a datasource.The data-
source information is specified in the configuration file separately, allowing the
same network to be used with multiple datasets easily. The syntax is

InputValue(rows, cols, {tag="feature"|"label"})
Input(rows, cols, {tag="feature"|"label"}) #deprecated

• rows - row dimension of the data.

• cols - column dimension of the data, default to 1. Each column is considered
as a sample in CNTK. Default value is often used since the actual value may
be determined by the minibatch size.

• tag - [named optional] tag for the inputs to indicate the intended usage. It
can be either feature or label.

4.1.4.2 ImageInput or Image

Defines the three-dimensional (channel_id, img_row, img_col) image input data
stored in column-major for the network. ImageInputs are read from a datasource
which is specified in the configuration file separately, allowing the same network
to be used with multiple datasets easily. The syntax is

ImageInput(width, height, channels, numImages,
{tag="feature"|"label"})

Image(width, height, channels, numImages,
{tag="feature"|"label"}) #deprecated

• width - width of the image data.

• height - height of the image data.

• channels - number of channels in the image data (i.e. RGB would have 3
channels)

• numImages - number of images, defaults to 1. Each image is stored as a
column vector with size width× height× channels.

• tag - [named optional] tag for the inputs to indicate the intended usage. It
can be either feature or label.

CNTK uses column-major (similar to matlab) to store the matrices. Each image
is represented as a column vector internally and should be stored as [channel_id,
img_row, img_col].
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4.1.4.3 LearnableParameter or Parameter

Defines a parameter in the network that will be trained and stored as part of the
model. Normally used for weight and bias matrices/vectors. These two function
names mean the same thing but Parameter is a shorter name. The syntax is

LearnableParameter(row, cols,
{computeGradient=true|false,
init="fixedValue"|"uniform"|"gaussian"|"fromFile",
value=0, initValueScale=number})

Parameter(row, cols, {needGradient=true|false,
init="fixedValue"|"uniform"|"gaussian"|"fromFile",
value=0, initValueScale=number}) #deprecated

• rows - number of rows in the parameter.

• cols - number of columns in the parameter, defaults to 1.

• needGradient- [named optional] determines whether the parameter should
be updated by the training algorithm. Defaults is true.

• init - [named optional] parameter initialization method.

– fixedValue- initialize all the values in the parameter with a fixed value
determined by the optional value argument.

– fromFile - No initialization is required, should only be used if the net-
work will be initializing it in some other way

– uniform - Initializes the parameter matrix with uniform random num-
bers in the range of [−0.05× initV alueScale, 0.05× initV alueScale]

– gaussian - Initializes the parameter matrix with Gaussian random num-
bers with zero mean and standard deviation of 0.2×initV alueScale/

√
cols

• initValueScale - [named optional] scale the range of the random numbers
used for initialization. Only meaningful when Uniform or Gaussian is used
as a init method. Default is 1.

• value - [named optional] the initial value of all the parameters when the
initialization method is set to fixedValue. Default is 0.
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4.1.4.4 Constant or Const

Defines a constant parameter (i.e., will not change during the training process) that
will be saved as part of the model. The syntax is

Constant(value, rows, cols)
Const(value, rows, cols) #deprecated

• value - the value of the constant.

• rows - row dimension of the data, default to 1.

• cols - column dimension of the data, default to 1.

4.1.4.5 RectifiedLinear or ReLU, Sigmoid, Tanh, Log

Apply the rectified linear function (RectifiedLinear or ReLU), Sigmoid function
(Sigmoid), hyperbolic tangent (Tanh), or natural logarithm (Log) to each element
of the input matrix. The resulting matrix has the same dimension as that of the
input matrix. The syntax is

RectifiedLinear(m)
ReLU(m) #deprecated
Sigmoid(m)
Tanh(m)
Log(m)

• m - input matrix. Can be any matrix except when it’s input to the log function
under which condition each element must be positive (otherwise exception
will be thrown).

4.1.4.6 Softmax

Compute the softmax of the input matrix for each column. The resulting matrix
has the same dimensions as that of the input matrix. The syntax is

Softmax(m)

• m - input matrix.
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4.1.4.7 LogSoftmax

Compute the log of softmax of the input matrix for each column. The resulting
matrix has the same dimensions as that of the input matrix. The syntax is

LogSoftmax(m)

• m - input matrix.

4.1.4.8 SumElements

Calculate the sum of all elements in the input matrix. The result is a scalar (or one
by one matrix). The syntax is

SumElements(m)

• m - input matrix

4.1.4.9 SumColumnElements

Calculate the sum of all elements in each column of the input matrix. The result is
a row vector. The syntax is

SumColumnElements(m)

• m - input matrix

4.1.4.10 Negate

Negate each element of the matrix. The resulting matrix has the same dimension
as that of the input matrix. The syntax is

Negate(m)

• m - input matrix.

4.1.4.11 Reshape

Reshape the input matrix. The resulting matrix has the same number of elements
as that of the input matrix but is interpreted differently. The syntax is

Reshape(m, numRows, [imageWidth=], [imageHeight=], [
imageChannels=]
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• m - input matrix.

• numRows - reshape to a matrix with numRows rows.

• imageWidth, imageHeight, imageChannels - are named optional parameters
that allow you to interpret each column as images with different dimensions.

4.1.4.12 RowSlice

Select a row slice from the input matrix for all columns (samples). The resulting
matrix is a numRows by m.cols matrix. This function is often used to extract a
portion of the input. The syntax is

RowSlicete(startRow, numRows, m)

• m - input matrix.

• startRow - the start row to get a slice

• numRows - the number of rows to get

4.1.4.13 RowStack

Concatnate rows of input matrices to form a bigger matrix. The resulting matrix is
a sumof(rows) by m1.cols matrix. It supports variable-length input. The syntax is

RowStack(m1, m2, ...)

• m1, m2 - input matrices. can be any number of input matrices.

4.1.4.14 Scale

Scale each element in the input matrix by a scalar value. The resulting matrix has
the same dimension as that of the input matrix. The syntax is

Scale(scaleFactor, m)

• scaleFactor - floating point scalar scale factor

• m - input matrix
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4.1.4.15 Times

Calculate the product of two matrices. The resulting matrix has a size of m1.rows
by m2.cols. The syntax is

Times(m1, m2)

• m1, m2 - input matrices. The m1.cols must equal m2.rows.

4.1.4.16 TransposeTimes

Calculate the product m1Tm2. The resulting matrix has a size of m1.cols by
m2.cols. The syntax is

Times(m1, m2)

• m1, m2 - input matrices. The m1.rows must equal m2.rows.

4.1.4.17 DiagTimes

Calculate the product of two matrices in which the first matrix is a diagonal matrix
whose diagonal values are represented as a vector. The resulting matrix is m1.rows
by m2.cols. The syntax is

DiagTimes(m1, m2)

• m1 - the diagonal matrix whose diagonal values are represented as a vector
of size m2.rows by one.

• m2 - a normal input matrix. m1.rows must equal m2.rows.

4.1.4.18 Plus, Minus

Calculate the sum (Plus) and difference (Minus) of two matrices. The resulting
matrices have the same dimension as that of the input matrix with larger dimension.
The syntax is

Plus(m1, m2)
Minus(m1, m2)

• m1, m2 - input matrices.
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4.1.4.19 ElementTimes, RowElementTimes, ColumnElementTimes,

Calculate the element-wise product of two matrices. The resulting matrices have
the same dimension as that of the input matrix with larger dimension. The syntax
is

ElementTimes(m1, m2)
RowElementTimes(m, vrow)
ColumnElementTimes(m, vcol)

• m1, m2, m - input matrices.

• vrow, vcol - row and column vectors

m1 and m2 must have same dimension in ElementTimes. m and vrow must have
same number of columns in RowElementTimes, and m and vcol must have same
number of rows in ColumnElementTimes.

4.1.4.20 KhatriRaoProduct or ColumnwiseCrossProduct

Compute the cross product of each column of two input matrices. These two func-
tions mean the same thing but ColumnwiseCrossProduct is easier to understand
for most people. The resulting matrix is a (m1.rows times m2.rows) by m1.cols
matrix. The syntax is

KhatriRaoProduct(m1, m2)
ColumnwiseCrossProduct(m1, m2) #deprecated

• m1, m2 - input matrices. The matrices should have same columns.

4.1.4.21 GMMLogLikelihood or GMMLL

Compute the Gaussian mixture model log likelihood of feature values given the un-
normalized Gaussian mixture weights (i.e., priors), Gaussian means and log stan-
dard deviation. The resulting matrix is a 1 by FeatureValues.cols matrix. This node
can be used in generative models to implement normal Gaussian mixture models
or mixture density network. The syntax is

GMMLogLikelihood(UnnormedPrior, Means, LogStddev,
FeatureValues)

GMMLL(UnnormedPrior, Means, LogStddev, FeatureValues) #
deprecated
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• UnnormedPrior- unnormalized Gaussian mixture weights (or prior). The
actual prior is the softmax of UnnormedPrior to make sure each prior is non-
negative and all priors sum to 1. UnnormedPrior.rows equals to the number
of Gaussian components.

• Means - the mean vectors of all the Gaussian components. Means.rows
equals to the number of Gaussian components times feature size.

• LogStddev - the log of the standard deviation for each Gaussian component.
All dimensions share the same LogStddev. The actual standard deviation
is the exponential of LogStddev to make sure it’s positive. LogStddev.rows
equals to the number of Gaussian components.

• FeatureValues - the feature values on which to compute the log likelihood.

Note, UnnormedPrior, Means and LogStddev should have the same number of
columns which should be either 1 or the same as the columns in FeatureValues.

4.1.4.22 SquareError or SE

Compute the sum of the squared difference between elements in the two input
matrices. The result is a scalar (i.e., one by one matrix). This is often used as a
training criterion node. The syntax is

SquareError(m1, m2)
SE(m1, m2) #deprecated

• m1, m2 - input matrices. Must have the same dimensions.

4.1.4.23 CrossEntropyWithSoftmax or CEWithSM

Compute the softmax for each column of the input matrix, compare the result
against the ground truth labels and compute sum of the cross entropy value for
all the columns (i.e., samples). The result is a scalar (i.e., one by one matrix). This
is often used as a training criterion node. The syntax is

CrossEntropyWithSoftmax(labels, matrix)
CEWithSM(labels, matrix) #deprecated

• labels - the ground truth labels

• matrix - input matrix.
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4.1.4.24 ClassBasedCrossEntropyWithSoftmax or CBCEWithSM

Compute the sum of the cross entropy value for all the columns (i.e., samples)
using the class-based evaluation trick to reduce the computation cost. The result
is a scalar (i.e., one by one matrix). This is often used as a training criterion node
when the number of classes is huge (e.g., in language model). The syntax is

ClassBasedCrossEntropyWithSoftmax(labels, matrix)
CBCEWithSM(labels, mainInputInfo, mainWeight,

classProbBeforeSoftmax) #deprecated

• labels - the ground truth labels. This is a 4 by T matrix, where T is the
number of samples. The first row is the ground truth output id. The second
row is the ground truth class id. The third and fourth rows are the start
(inclusive) and end (exclusive) output ids corresponding to the ground trueth
class id.

• mainInputInfo - contains the main information to make the classfication de-
cision. It’s an inputDim by T matrix. In language model, inputDim is often
the hidden layer size.

• mainWeight - the inputDim by outputDim weight matrix, where inputDim is
the number of rows in mainInputInfo and outputDim is the number of output
nodes (e.g., number of words in language model). During the computation,
only the column slice corresponding to the start and end output ids of the
class id is used to reduce the computation.

• classProbBeforeSoftmax - applying softmax on this matrix will result in
class probabilities. This is a numOfClass by T matrix, where numOfClass is
the number of classes.

4.1.4.25 ErrorPrediction or ClassificationError

Evaluate the classification error of the predictions made by the model. It finds the
index of the highest value for each column in the input matrix and compares it to
the actual ground truth label. The result is a scalar (i.e., one by one matrix). This
is often used as an evaluation criterion. It cannot be used as a training criterion
though since the gradient is not defined for this operation. The syntax is

ErrorPrediction(labels, m)
ClassificationError(labels, m)
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• labels - the ground truth labels

• m - input matrix.

4.1.4.26 CosDistance or CosDist

Evaluate the cosine distance between each column of two input matrices. The
resulting matrix is a one by m1.cols row vector. The syntax is

CosDistance(m1, m2)
CosDist(m1, m2) #deprecated

• m1, m2 - input matrices. The matrices should have same dimensions.

4.1.4.27 CosDistanceWithNegativeSamples or CosWithNegSamples

Evaluate the cosine distance between each column of two input matrices as the
distance of positive samples, and the cosine distance between each column of the
left matrix (m1) and numNegSamples of samples in the right matrix (m2) selected
by shifting the column numShifts times as the negative samples. The resulting
matrix is numNegSamples+1 by m1.cols matrix. Often used in the deep structured
semantic model (DSSM). The syntax is

CosDistanceWithNegativeSamples(m1, m2, numShifts,
numNegSamples)

CosWithNegSamples(m1, m2, numShifts, numNegSamples) #
deprecated

• m1, m2 - input matrices. The matrices should have same dimensions.

• numShifts - number of shifts in m2 for choosing negative samples, a 1 by 1
matrix

• numNegSamples- number of negative samples to use in m2, a 1 by 1 matrix

4.1.4.28 MatrixL1Reg or L1Reg, MatrixL2Reg or L2Reg

Compute the L1 (MatrixL1Reg, L1Reg) or Frobenius (MatrixL2Reg, L2Reg) norm
of the input matrix. The result is a scalar (i.e., one by one matrix). This is often
used as regularization terms. The syntax is
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MatrixL1Reg(m)
L1Reg(m) #deprecated
MatrixL2Reg(m)
L2Reg(m) #deprecated

• m - input matrix

4.1.4.29 Mean

Compute the mean vector of the input matrix by sweeping the whole dataset. The
resulting matrix is a m.rows by one matrix. This operation is precomputed before
the first training pass. The syntax is

Mean(m)

m - input matrix

4.1.4.30 InvStdDev

Compute the per-dimensional (i.e., assume each dimension is independent with
each other and the covariance matrix is a diagonal) inversed standard deviation
vector of the input matrix by sweeping the whole dataset. The resulting matrix is a
m.rows by one matrix. This operation is precomputed before the first training pass.
The syntax is

InvStdDev(m)

• m - input matrix

4.1.4.31 PerDimMeanVarNormalization or PerDimMVNorm

Compute the mean-variance normalized matrix for each column (i.e., sample) of
the input matrix. The resulting matrix has the same dimensions as the input matrix.

PerDimMeanVarNormalization(m, mean, invStdDev)
PerDimMVNorm(m, mean, invStdDev) #deprecated

• m - input matrix than needs to be normalized

• mean - the mean vector. It’s a m.rows by one matrix.

• invStdDev - the per-dimensional inversed standard deviation vector. It’s a
m.rows by one matrix in which all values are non-negative.
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4.1.4.32 PerDimMeanVarDeNormalization or PerDimMVDeNorm

De-normalize from the mean-variance normalized input matrix for each column
(i.e., sample). It is often used in the generative model where during the training
the network’s output node is normalized which needs to be de-normalized at the
actual generation process. The resulting matrix has the same dimensions as the
input matrix.

PerDimMeanVarDeNormalization(m, mean, invStdDev)
PerDimMVDeNorm(m, mean, invStdDev) #deprecated

• m - input matrix than needs to be de-normalized

• mean - the mean vector. It’s a m.rows by one matrix.

• invStdDev - the per-dimensional inversed standard deviation vector. It’s a
m.rows by one matrix in which all values are non-negative.

4.1.4.33 Dropout

Compute a new matrix with some percentage of random elements in the input
matrix set to zero. The percentage (called dropout rate) is often set as part of the
training configuration (e.g., the stochastic gradient descent block we will discuss in
Section ??). During evaluation the dropout rate is set to zero and this operation has
no effect (i.e., just pass the input matrix through). It is commonly used to prevent
overfitting during the training process or to pretrain a model. The syntax is

Dropout(m)

• m - input matrix

4.1.4.34 Convolution or Convolve

Compute the convolution of a weight matrix with an image. The resulting matrix
may have different dimension depends on the parameters passed in. The syntax is

Convolution(w, image, kernelWidth, kernelHeight,
outputChannels, horizontalSubsample,
verticalSubsample, [zeroPadding=false,
maxTempMemSizeInSamples=0])

Convolve(w, image, kernelWidth, kernelHeight,
outputChannels, horizontalSubsample,
verticalSubsample, [zeroPadding=false,
maxTempMemSizeInSamples=0]) #deprecated
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• w - convolution weight matrix, it has the dimensions of [outputChannels,
kernelWidth * kernelHeight * inputChannels]. If w’s dimensions are not
specified (i.e., all are zero’s) they will be automatically set by CNTK using
a depth-first traversing pass.

• image - the input image.

• kernelWidth - width of the kernel

• kernelHeight - height of the kernel

• outputChannels - number of output channels

• horizontalSubsample - subsamples (or stride) in the horizontal direction. In
most cases this should be set to 1.

• verticalSubsample - subsamples (or stride) in the vertical direction. In most
cases this should be set to 1.

• zeroPadding - [named optional] specify whether the sides of the image should
be padded with zeros. Default is false. When it’s true, the convolution win-
dow can move out of the image.

• maxTempMemSizeInSamples - [named optional] maximum amount of mem-
ory (in samples) that should be reserved to do matrix packing. Default is 0
which means the same as the input samples.

4.1.4.35 MaxPooling, AveragePooling

Computes a new matrix by selecting the maximum (MaxPooling) or computing the
average (AveragePooling) value in the pooling window. This is used to aggregate
information from the input and will reduce the dimensions of a matrix. The syntax
is

MaxPooling(m, windowWidth, windowHeight, stepW, stepH)
AveragePooling(m, windowWidth, windowHeight, stepW, stepH)

• m - input matrix

• windowWidth - width of the pooling window

• windowHeight - height of the pooling window

• stepW - step (or stride) used in the width direction

• stepH - step (or stride) used in the height direction
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4.1.4.36 PastValue (or Delay) and FutureValue

Used to get the past or future value of a node. It is most often used to create
recurrent networks. The resulting matrix has the same dimension as that of the
input matrix. The syntax is

PastValue(rows, cols, m, [timeStep=1, defaultHiddenActivity
=0.1])

Delay(rows, cols, m, [delayTime=1, defaultPastValue=0.1]) #
deprecated

FutureValue(rows, cols, m, [timeStep=1,
defaultHiddenActivity=0.1])

• rows - the number of rows in the input matrix. This parameter is needed be-
cause under some loopy conditions the dimensions cannot be automatically
inferred from the input matrix.

• cols - the number of columns in the input matrix.

• m - input matrix from which the past or future value is obtained. Each col-
umn is a sample. The samples may be from different utterances as explained
in Chapter .2

• timeStep, delayTime - [named optional] the amount of time steps look into
past or future. Default is 1.

• defaultHiddenActivity, defaultPastValue - [named optional] the default value
to use if the past or future values are not available. Default is 0.1.

4.2 Model Editing Language

The model editing language (MEL) of the CNTK provides a means to modify
both the structure and the model parameters of an existing trained network using
a set of provided commands. It provides a number of functions to modify the
network and can use network description language (NDL) to define new elements.
MEL is very important since it allows users, for example, to train a network with
one configuration and later use it as part of another network designed for another
purpose. It also allows users to do discriminative pretraining [3, 4] on DNNs by
building shallow networks first and then inserting new layers one on top of another.

It looks similar to a scripting language in syntax, but give a simple way to
modify an existing network. This network must have been defined in a format that
CNTK can read, currently only the CNTK computational network disk format is
supported.
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4.2.1 Basic Features

In this section we cover the basic features of the MEL by the following example.

model1 = LoadModel("c:\models\mymodel.dnn", format=cntk)
SetDefaultModel(model1)

DumpModel(model1, "c:\temp\originalModel.dmp", includeData =
true)

#create another hidden layer
Copy(L3.*, L4.*, copy="all")

#Hook up the layer
SetInput(L4.*.T, 1, L3.RL) # Layer 3 output to Layer 4 input
SetInput(CE.*.T, 1, L4.RL) # Layer 4 output to Top layer

input

#Add mean variance normalization using in-line NDL
meanVal = Mean(features)
invstdVal = InvStdDev(features)
inputVal = PerDimMeanVarNormalization(features,meanVal,

invstdVal)

#make the features input now take the normalized input
SetInput(L1.BFF.FF.T, 1, inputVal)

#save model
SaveModel("c:\models\mymodel4HiddenWithMeanVarNorm.cn")

This MEL script is using a network that was defined originally by the NDL
script

# constants defined
# Sample, Hidden, and Label dimensions
SDim=784
HDim=256
LDim=10

features=Input(SDim, tag="feature")
labels=Input(LDim, tag="label")

# Layer operations
L1 = RBFF(features, HDim, SDim)
L2 = RBFF(L1, HDim, HDim)
L3 = RBFF(L2, HDim, HDim)
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CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")
Err=ErrorPrediction(labels, CE.F, tag="eval")

# rootNodes defined here
OutputNodes=(CE.F)

4.2.1.1 Loading and Setting Default Models

The first command of a MEL script is usually a LoadModel() command. This func-
tion takes the name of a model file on disk, and an optional parameter specifying
the format of the model file. Currently only CNTK format model files are accepted,
and CNTK format is the default value. Programmers can write file converters to
support more model formats.

model1 = LoadModel("c:\models\mymodel.cn", format="cntk")
SetDefaultModel(model1)

Here model1 is the name this model is within the MEL script. This identifier
is used in the next line to set this model as the default model. The default model
defines the model that will be assumed in all name references within the script,
where a model name is required but not specified, and the model to which any NDL
commands will apply. If no model has been explicitly set to be the default model,
the last loaded or created model is used as a default. However, It is recommended
that the SetDefaultModel() command be used to make it explicit.

4.2.1.2 Viewing a Model File

It is often necessary to view a model file to determine the names used in the model
file. MEL uses the node names in most commands, to specify which node(s) should
be modified. The Dump() command dumps the node names and optionally values
to a readable file. The parameters are the model name, the file name, and if the
dump should include data. The includeData optional parameter defaults to false.

DumpModel(model1, "c:\temp\originalModel.dmp", includeData =
true)

The dump looks something like this:

...
features=InputValue [784,32]
L1.BFF.B=LearnableParameter [256,1] NeedGradient=true
0.0127850091
-0.00473949127
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0.0156492535
...
0.00529919751
####################################################################

L1.BFF.FF.P=Plus ( L1.BFF.FF.T , L1.BFF.B )
L1.BFF.FF.T=Times ( L1.BFF.W , normInput )
L1.BFF.W=LearnableParameter [256,784] NeedGradient=true
0.0174789988 0.0226208009 -0.00648776069 0.0346485041

-0.0449098013 -0.0233792514
0.0154407881 0.000157605857 0.0206625946 0.0491085015

0.00128563121
...

4.2.1.3 Copy Nodes

The copy command will copy a node, or a group of nodes from one location to
another location. This can be done within the same model, or between different
models:

#create another hidden layer
Copy(L3.*, L4.*, copy=all)

The first parameter is the source of the copy and must exist, the second is the
target and may or may not exist. If it does exist, those matching nodes will be
overwritten by the copy. The optional parameter copy can be used to change this
behavior, the options are: all - the default, which copies all node data and links, or
value - which copies the node values only, leaving the connections between nodes
(if any) unchanged.

Since the L3 used in this copy command was originally defined in NDL as

L3 = RBFF(L2, HDim, HDim)

The new L4 layer will contain all the nodes L3 contains (RectifiedLinear, Plus,
Times, W and B Parameters) all connected just as they were in the original L3
layer.

4.2.1.4 SetInput

To integrate this new layer into the model, the inputs and outputs of the nodes must
reset. After the copy any node whose connected nodes were not copied will have
those connections set to an invalid value. These need to be fixed in order to have a
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valid model. Before a model can be saved CNTK first checkes to see if all nodes
are correctly connected.

You can change connections between nodes with the SetInput() command. This
command takes a node to modify, the input number (zero-based) to modify, and the
new value for that input. The following commands hook up the inputs and outputs
for our copied nodes:

#hook up the layer
SetInput(L4.*.T, 1, L3.RL) # Layer 3 output to Layer 4 input
SetInput(CE.*.T, 1, L4.RL) # Layer 4 output to Top layer

input

To connect our new L4 layer, we need to set the second input of the Times node
(L4.BFF.FF.T) to L3.RL, which is the output of the L3 layer. The input number is
zero-based, so the first input is zero and the second input would be ’1’. Likewise
we need to hook the output of the L4 layer nodes to the input of the top layer. Once
again this ends up being a Times node (CE.BFF.FF.T).

4.2.1.5 Adding New Nodes: In-line NDL and NDL Snippets

Adding new nodes to an existing model can be done just as a model was originally
defined in NDL. There are two ways to do this, the simplest is to just type the NDL
definitions into the MEL script, as if it was NDL, like so:

#Add mean variance normalization using in-line NDL
meanVal = Mean(features)
invstdVal = InvStdDev(features)
inputVal = PerDimMeanVarNormalization(features,meanVal,

invstdVal)

This is called in-line NDL and can be used for most tasks. The new nodes will
be placed in the current default model in the MEL script. Note that the variable
features used in the NDL is actually a node from the default model. In-line NDL
may use node names from the default model as parameters, and MEL commands
may use NDL symbols as parameters. There are a number of restrictions in using
in-line NDL:

• Only fully quantified node names are accepted.

• NDL symbols only apply to the default model at the time they were created
when used in MEL commands.

• Macros may not be defined in in-line NDL (though they can in an NDL
snippet)
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• Only macros defined in the default macro file referenced in the config file,
or macros defined in an NDL snippet in the MEL Script may be used.

• NDL will be processed when the next MEL command that requires it to be
processed is encountered. It is only at this time that the new nodes are fully
created. If forward references are used to variables, they must be resolved
before the next MEL command that requires the variables to be resolved.

Using NDL Snippet is another way. NDL snippets are sections of NDL definitions
that generate new nodes. Any NDL construct that is legal in an NDL script can be
used. This includes defining macros and other advanced NDL features. Inside the
snippets wildcard naming and use of symbols from another model are not allowed.
The syntax for defining an NDL snippet are as follows:

[modelName]=[
#ndl commands go here
]

Upon the completion of the snippet, the modelName will be the name of the
newly defined model. This model need not be fully defined. For example, the
special nodes (i.e. criteria nodes) do not need to be defined in the model. However,
all referenced variables must be defined in the snippet. It is often easier to use
in-line NDL to define new nodes in MEL, and NDL Snippets to define any macros.
Macros are defined in a global namespace and can be defined in any model and
used from any other model. One possible use of an NDL snippet is to define an
entirely new model, and then use MEL to populate the new model with values.

4.2.1.6 SaveModel

After the model edits are complete, it’s time to save the model:

#save model
SaveModel("c:\models\mymodel4HiddenWithMeanVarNorm.cn")

This command saves the default model to the path name specified. Alterna-
tively, you can specify the model name as the first parameter with the path as the
second to make the model name explicit. Before the save happens the model is
validated to ensure it is a valid model. Should there be an error in the model, an
error message will be displayed on the console and the model edit will terminate.

4.2.1.7 Name Matching

You may have noticed the use of the ‘*’ wildcard character in the commands pre-
sented to this point. Those are name matching wildcards, and are useful in match-
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ing a group of related nodes. Because of the hierarchical dot-naming scheme used
by NDL, it is easy to select all the nodes that a particular macro generated because
they will all start with the same prefix. Nodes generated by NDL macros have the
following structure:

[name]{.[macroName]}.[nameNode]

Where name is the name assigned in NDL, macroName is the name given to a
macro called by the initial macro, and can be several layers deep, and nameNode
is the name given to a single node in the final macro. For example, this macro in
NDL

L3 = RBFF(L2, HDim, HDim)

generates the following nodes:

• L3.RL: RectifiedLinear node

• L3.BFF.B: Parameter node - used for bias

• L3.BFF.W: Parameter node - used for weight

• L3.BFF.FF.T: Times node

• L3.BFF.FF.P: Plus node

These wildcard patterns can be used to access these nodes:

• L3.*: Select all the L3 nodes

• L3.*.P: Select the L3.BFF.FF.P node

• L3.*: All the L3 nodes in the model

4.2.2 MEL Command Reference

This section contains the currently implemented MEL Command functions.

4.2.2.1 CreateModel, CreateModelWithName

Creates a new empty model. The syntax is

m=CreateModel()
CreateModelWithName(m)

• m - the name of newly created model



CHAPTER 4. ADVANCED SETUPS IN COMPUTATIONAL NETWORK TOOLKIT115

4.2.2.2 LoadModel, LoadModelWithName

Load a model from a disk file and assign it a name. The syntax is

m=LoadModel(modelFileName, [format="cntk"])
LoadModelWithName(m, modelFileName, [format="cntk"])

• m - the name of loaded model

• modelFileName - name of the model file, can be a full path name. If it
contains spaces, it must be enclosed in double quotes.

• Currently only the native CNTK format of model file is accepted. Other
formats may be supported in the future.

4.2.2.3 SaveDefaultModel, SaveModel

Save a model to disk in the specified model format.

SaveDefaultModel(modelFileName, [format="cntk"])
SaveModel(m, modelFileName, [format="cntk"])

• m - the name of the model to save

• modelFileName - name of the model file, can be a full path name. If it
contains spaces, it must be enclosed in double quotes.

• Currently only the native CNTK format of model file is accepted. Other
formats may be supported in the future.

4.2.2.4 UnloadModel

Unload the specified model from memory. The syntax is

UnloadModel(m)

• m- the name of the model to unload.

In general it is unnecessary to unload a model explicitly since it will happen auto-
matically at the end of the MEL script. It is also not recommended that you reuse
a model identifier after unloading a model.
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4.2.2.5 LoadNDLSnippet

Load an NDL Snippet from a file, and process it, assigning the results to a name.
The syntax is

LoadNDLSnippet(m, nsdSnippetFileName, [section])

• m- the name of the model that the snippet will be applied to.

• ndlSnippetFileName - name of the file that contains the snippet we want to
load.

• section - [named optional] name of the section that contains the snippet we
want to load. If the entire file is the snippet no section name should be
specified. Default is the first section appear in the file.

4.2.2.6 Dump, DumpModel

Dump the contents and structure of a model to a file. These two functions mean
the same thing. The syntax is

Dump(m, dumpFileName, [includeData=true|false])
DumpModel(m, dumpFileName, [includeData=true|false])

• m- name of the model to dump.

• dumpFileName- name of the file that we want to save the output.

• includeData - [named optional] if set to true the contents of the nodes that
contain matrix values will also be dumped. Default is false.

4.2.2.7 DumpNode

Dump the contents and structure of a node to a file. The syntax is

DumpNode(node, dumpFileName, [includeData=true|false])

• node - node name, a wildcard name may be used to output multiple nodes in
one call

• dumpFileName- name of the file that we want to save the output.

• includeData - [named optional] if set to true the contents of the nodes that
contain matrix values will also be dumped. Default is false.
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4.2.2.8 Copy, CopyNode

Copy a node, or a group of nodes from one location to another location. This can
be done within the same model, or between different models. The copy can create
new nodes or overwrite/update existing nodes. The network structure can be copied
with multiple nodes, or just the values in the nodes. The syntax is

Copy(fromNode, toNode, [copy="all"|"value"])
CopyNode(fromNode, toNode, [copy="all"|"value"])

• fromNode - node identifier we are copying from. This can also be a wildcard
pattern.

• toNode - node identifier we are copying to. This can also be a wildcard
pattern, but must match the fromNode pattern. A copy from a single node to
multiple nodes is also permitted.

• copy - [named optional] specifies how the copy will be performed. Default
is all.

if destination node exists if destination node does not exist
all Copies over the values of the

nodes and any links between
them overwriting the existing
node values. Any node inputs
that are not included in the copy
set will remain unchanged.

Copies over the values of the
nodes and any links between
them creating new nodes. All
nodes that include inputs in the
copy set will still be connected.
All other nodes will have no in-
puts and will need to be set using
SetInput()

value Copies over the node contents,
the node inputs will remain un-
changed

Not a valid option, the nodes
must exist to copy only values.

4.2.2.9 CopySubTree

Copy all nodes in a subtree of a computational network from one location to an-
other location. This can be done within the same model, or between different
models. The syntax is

CopySubTree(fromRootNode, toRootNode, [copy="all"|"value"])
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• fromRootNode - node identifier we are copying from. This can also be a
wildcard pattern.

• toRootNode - node identifier we are copying to. This can also be a wildcard
pattern, but must match the fromRootNode pattern.

• copy - [named optional] specifies how the copy will be performed. See the
Copy and CopyNode command for details. Default is all.

If the fromRootNode is a wildcard pattern then the toRootNode must also be a
similar wildcard pattern. The CopySubTree() command will execute separately for
each root node.

4.2.2.10 SetInput or SetNodeInput

Set an input (child) of a node (i.e., operand of an operator) to a value. The syntax
is

SetInput(node, inputNumber, inputNode)

• node - node whose input will be set. This can also be a wildcard pattern.

• inputNumber - a zero-based index to the input that will be set.

• inputNode - node identifier for input node. This must be a single node.

4.2.2.11 SetInputs or SetNodeInputs

Set all the inputs (children) of a node (i.e., operands of an operator). If only one
input needs to be set use the SetInput() command instead. The syntax is

SetInputs(node, inputNode1[, inputNode2, inputNode3])

• node - node whose input we are modifying .

• inputNode1, inputNode2, inputNode3 - node identifier for input node. The
number of input parameters must match the number of inputs the referenced
node requires.
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4.2.2.12 SetProperty

Set the property of a node to a specific value. The syntax is

SetProperty(node, propertyName, propertyValue)

• node - the node whose properties will be set

• propertyName - property name to modify.

• propertyValue - the new property value.

The acceptable property names and property values are as follows:

• computeGradient or needsGradient=true|false: A flag that determine if a
node participates in gradient calculations. Applies to Parameter nodes

• feature=true|false: Sets the node as a feature input. Applies to input nodes.

• label=true|false: Set the node as a label input. Applies to input nodes.

• finalCriterion or criterion=true|false: Sets the node as one of the criteria
nodes of the network.

• evaluation or eval=true|false: Set the node as one of the evaluation nodes.

• output=true|false: Set the node as one of the output nodes.

• multiSeq=true|false: Set the node as one of the nodes that require special
handling when multiple sequences are used in the training or evaluation.

4.2.2.13 SetPropertyForSubTree

Set the property of a node to a specific value. The syntax is

SetProperty(rootNode, propertyName, propertyValue)

• rootNode - the node at the root of the subtree

• propertyName - property name to modify.

• propertyValue - the new property value.

The acceptable property names and property values for this command are as fol-
lows:

• ComputeGradient or NeedsGradient=true|false: A flag that determine if a
node participates in gradient calculations. Applies to Parameter nodes
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4.2.2.14 Remove or RemoveNode, Delete or DeleteNode

Delete or Remove node(s) from a model. All alternate commands perform the
same operation. The syntax is

Remove(node, [node2, node3]) #deprecated
Delete(node, [node2, node3]) #deprecated
RemoveNode(node, [node2, node3])
DeleteNode(node, [node2, node3])

• node - the node to be removed. This can be a wildcard name.

• node2, node3 - additional optional nodes that will also be removed, These
can be wildcards

This command can leave unconnected nodes in a model that would need to be
reconnected using the SetInput() or SetInputs() commands.

4.2.2.15 Rename

Rename a node. Note that this only changes the name of a node (e.g., making it
easier to understand and to reference) but not how it connects with other nodes.
The syntax is

Rename(oldNodeName, newNodeName)

• oldNodeName- the old node name. Wildcard naming may be used.

• newNodeName- the new node name. Matching wildcard naming may be
used if oldNodeName contains wildcards.



Chapter 5

Extending the Computational
Network Toolkit

CNTK is designed for extension as illustrated by Figure 5.1, which indicates that
the building blocks in CNTK are decoupled by interfaces. It separates the core
computational network operations, training algorithms, network builders, and data
readers. Adding new computation nodes and data readers to fit your needs is as
simple as plug and play as we will introduce in this chapter.

At the center of the CNTK is the ComputationNetwork class, which manages
the life span of computation nodes comprising the network and all the functions
operating at the network level such as forward computations and gradient calcu-
lations. To build a computational network you need to use one of the compu-
tational network builder classes that implement the IComputationNetBuilder in-
terface. These classes include SimpleNetworkBuilder that supports building sim-
ple layer-by-layer fully connected networks and recurrent neural networks (RNNs)
such as simple RNN and long short-term memory (LSTM) RNNs, as well as NDL-
NetworkBuilder that builds neural networks, using any computation node we have
described in Section 2.4, based on the network definition language described in
Chapter 4.

IDataReader is an interface for loading data and its transcriptions. Differ-
ent data file formats require different data readers. CNTK already implements
the UCIFastReader and the BinaryReader that reads in UCI data in either text
or binary format, the HTKMLFReader that reads in HTK/MLF speech data, the
SequenceReader that is designed for language model data files, and the LUSe-
quenceReader designed for reading language understanding data files. Users need
to either convert their data files into one of the data file formats already supported
or implement their own data reader.

121
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Figure 5.1: CNTK Architecture

To train a model, a learner, such as the stochastic gradient descent (SGD)
learner, reads in features and labels through the IDataReader interface, calls the
Evaluate and ComputeGradient methods of the ComputationNetwork object, and
updates the model based on some training criterion and algorithm. The SGD
learner available in CNTK implements common SGD-based parameter update meth-
ods such as momentum and AdaGrad. In addition, the SGD learner also imple-
ments a gradient checker so that users can validate gradient computations of their
networks.

In most cases you will find that the existing functionality in the CNTK is suf-
ficient to support your research. However, occasionally you may need to modify
CNTK to support, for example, your special data format or computation. In this
chapter we introduce how to extend the CNTK to support your special require-
ments. We foresee that the most frequent needs are adding a special data reader
and writer, a special computation node, and a special training algorithm. This
chapter is organized to cover these topics in order.

5.1 Adding a Data Reader and Writer

CNTK was designed with the idea that data input and output would need to tran-
spire in many different formats. For this reason we have designed the data reader
(IDataReader) and writer (IDataWriter) interfaces to cover various data needs. The
reader/writer code is housed in separate DLLs which are dynamically loaded to
provide data services. Each reader DLL exports the functions

extern "C" DATAREADER_API void GetReaderF(IDataReader<float
>** preader);

extern "C" DATAREADER_API void GetReaderD(IDataReader<double
>** preader);

to return the IDataReader interfaces for the floating and double precision, respec-
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tively, and each writer DLL exports the functions

extern "C" DATAWRITER_API void GetWriterF(IDataWriter<float
>** pwriter);

extern "C" DATAWRITER_API void GetWriterD(IDataWriter<double
>** pwriter);

to return the IDataWriter interfaces for the floating and double precision, respec-
tively. This allows the user to simply specify, for example, a reader block, in the
configuration setting to use a different reader.

5.1.1 IDataReader

To add a new reader, you need to implement the IDataReader interface

// implemented by DataReader and underlying classes
template<class ElemType>
class DATAREADER_API IDataReader
{
public:

typedef std::string LabelType;
typedef unsigned LabelIdType;

virtual void Init(const ConfigParameters& config) = 0;
virtual void Destroy() = 0;

virtual void StartMinibatchLoop(size_t mbSize, size_t epoch
, size_t requestedEpochSamples=requestDataSize) = 0;

virtual bool GetMinibatch(std::map<std::wstring, Matrix<
ElemType>*>& matrices) = 0;

virtual const std::map<typename LabelIdType, typename
LabelType>& GetLabelMapping(const std::wstring&
sectionName) = 0;

virtual void SetLabelMapping(const std::wstring&
sectionName, const std::map<typename LabelIdType,
typename LabelType>& labelMapping) = 0;

virtual bool GetData(const std::wstring& sectionName,
size_t numRecords, void* data, size_t& dataBufferSize,
size_t recordStart) = 0;

virtual bool DataEnd(EndDataType endDataType) = 0;

// Recursive network specific methods
virtual size_t NumberSlicesInEachRecurrentIter() = 0;
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virtual void SetNbrSlicesEachRecurrentIter(const size_t)
= 0;

virtual void SetSentenceEndInBatch(vector<size_t> &
sentenceEnd)=0;

};

and the GetReaderF and GetReaderD methods, where

• Init – initialize the reader from a set of ConfigurationParameters. You can
use configuration setups similar to that implemented in the existing readers
or add new setups specific to your own reader.

• Destroy – release the resources used by the reader.

• StartMinibatchLoop – Starts the minibatch loop with the parameters

– mbSize – minibatch size, can be number of frames for frame based
training or number of series for sequence level training.

– epoch – epoch number we are currently processing

– requestedEpochSize – the number of records in an epoch. It is used
to determine when an epoch ends. The epoch size can be different
(larger or smaller) from the dataset size. When a user passes the con-
stant requestDataSize as the epoch size, the actual epoch size equals
the dataset size.

• GetMinibatch – Get the values of the next minibatch. To support multiple
inputs/outputs for the CNs, matrices, a dictionary that maps from the com-
putation node names to the actual matrices are passed into the function. This
function returns true if the next minibatch is fetched or false if end of epoch
is reached.

• GetLabelMapping – Get the label map from the reader, where sectionName
specifies the section which contains the label map, if applicable. Some read-
ers do not need a section name if only one label map is supported and some
readers may not need a label mapping at all. This function returns the map
from labelId (integer) to label (std::string).

• SetLabelMapping – Set the label map for the reader, where sectionName
specifies the section which is assigned to the label map, if applicable, and
labelMapping is the label map that is being set. Some readers do not need a
section name or even a label map.

• GetData – Get data from a predefined section with parameters
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– sectionName – the section which contains the data,

– numRecords – the number of records to read,

– data – pointer to the data buffer. Needs to be released by the caller,

– dataBufferSize – size of the buffer. If dataBufferSize equals zero or
data equals nullptr, enough memory will be allocated by the function
and the number of bytes allocated will be returned through this vari-
able,

– recordStart – the record to start reading from.

• DataEnd – Returns whether it is the end of a dataset, an epoch or a sentence
as specified by endDataType.

• NumberSlicesInEachRecurrentIter – Get the number of slices for each trun-
cated BPTT computation. It is used in recurrent networks.

• SetNbrSlicesEachRecurrentIter – Set the number of slices for each truncated
BPTT computation. It is used in recurrent networks.

• SetSentenceEndInBatch – Set the end of sentences in the sentence minibatch.
It is used in recurrent networks.

In some cases you don’t need to write the data reader from scratch. For example,
you can build your reader upon an existing reader by deriving from it or using it as
a cache.

CNTK was designed to support multiple input and output streams. This is
implemented by passing pairs of computation node names and matrices to the Get-
Minibatch function. In most cases you only need one named pair to get one feature
stream during testing and two named pairs to get both the feature and label during
training. However, you may pass any number of pairs to get as many streams as
needed if it is supported by your data reader.

Randomization is important for many stochastic training algorithms. It is thus
suggested that you either require users to pre-randomize the data or implement a
random shuffling algorithm inside your reader. Sample and sequence should be the
unit for randomization, respectively, when sample and sequence level model (e.g.,
RNN) or training criteria are used.

To support recurrent networks, it’s suggested to implement the data reader so
that multiple sequences can be used as a batch as discussed in Chapter 2. You can
find example implementations in the HTKMLFReader.
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5.1.2 IDataWriter

To add a new writer, you need to implement the IDataWriter interface

// implemented by some DataWriters
template<class ElemType>
class DATAWRITER_API IDataWriter
{
public:

typedef std::string LabelType;
typedef unsigned LabelIdType;

virtual void Init(const ConfigParameters& config) = 0;
virtual void Destroy() = 0;

virtual void GetSections(std::map<std::wstring,
SectionType, nocase_compare>& sections) = 0;

virtual bool SaveData(size_t recordStart, const std::map<
std::wstring, void*, nocase_compare>& matrices,
size_t numRecords, size_t datasetSize, size_t
byteVariableSized) = 0;

virtual void SaveMapping(std::wstring saveId, const std::
map<typename LabelIdType, typename LabelType>&
labelMapping) = 0;

};

and the GetWriterF and GetWriterD methods, where

• Init – Initialize the writer from a set of ConfigurationParameters.

• Destroy – Release the resources used by the writer.

• GetSections – Gets the sections that are available in the file to write to.

• SaveData – Save data to the file with parameters

– recordStart – the record to start writing to

– matrices – a dictionary that maps from the section names to the data
pointers. The names of the sections in the dictionary should be equal
to the sections returned by GetSections().

– numRecords – number of records to write out

– datasetSize – size of the dataset

– byteVariableSized – the number of bytes used for variable sized data.
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Table 5.1: The Data Formats the Configuration Classes Support. # means any
number. $ means a character used as a separator. [] means optional.

Config Type C++ Type Data Format
integer int, long, short, size_t [-]#

floating-point float, double [-]#.#[e{+-}#]
string std::wstring, std::string Any valid character

boolean bool
T, True, 1
F, False, 0

array ConfigArray

value:value:value
value:value*#:value
{|value|value|value}

{|value|value*#|value}
{ value value value*# }

dictionary ConfigParameters
param1=value1;param2=value2;boolparam

[$param1=value1$param=value2$boolparam]
[ param1=value1 param=value2 boolparam ]

• SaveMapping – Save the label mapping table, where saveId is the section
name where the mapping will be saved and labelMapping is the label map
from labelId (integer) to label (std::string).

5.1.3 Configuration

For users to use new data readers and writers they need to specify parameters.
CNTK provides a set of easy to use configuration parsing functions. It is rec-
ommended that these functions are used so that the configuration parsing can be
consistent with other components.

The programmer interface to the configuration files is contained in a few C++
classes and focuses on “just-in-time” evaluation of the parameter values. The idea
is simple, leave the configuration values in string format until they actually need to
be parsed into some other form. Table 5.1 summarizes the different data formats
the configuration classes support.

The three most frequently used configuration classes are ConfigValue, Config-
Parameters and ConfigArray.

5.1.3.1 ConfigValue

The ConfigValue class allows the just-in-time (JIT) evaluation of configuration
strings. It inherits from std::string, and stores an optional configuration path string,
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which is mainly used for error messages. It contains many cast operators that parse
the string value into the target type on demand.

5.1.3.2 ConfigParameters

The ConfigParameters class represents dictionaries of ConfigValue and is used to
describe the hierarchy of configuration sets. It accesses the configuration values
and automatically searches up the hierarchy of ConfigParameter classes if a value
is not found on the current level. The hierarchy is maintained by the order of class
instantiations on the stack. ConfigParameters should only be created on the stack.

In configuration files the ‘name=value’ named pair are usually separated by
newlines. However, they also can be separated by other characters and placed
on the same line. The default separator for ConfigParmeters is a ‘;’ (semicolon).
This can be overridden by placing the alternate separator character immediately
following the opening brace. For example ‘[|’ causes ‘|’ to be the separator for that
ConfigParameter instance:

name=[|parameter1=value1|parameter2=value2|parameter3=value3
]

There are several ways to access the values stored inside the ConfigParameters
object config:

• value = config(“name”) – returns the named parameter cast to the type of
the value parameter. If the named configuration parameter does not exist an
exception will be thrown.

• value = config(“name”, “defaultValue”) – returns the named parameter, if
it doesn’t exist returns defaultValue.

• config.Exists(“name”) – returns whether the named value exists in the Con-
figParameters object config.

To insert elements into the ConfigParameters object config the following methods
can be used:

• config.Insert(“name”, value) – inserts a new value into config. If the value
already exists, it will be replaced, unless the value is itself another Config-
Parameters object, or string representation surrounded by square braces ‘[]’,
in which case the parameters are “merged”.

• config.Insert(“name=value”) – inserts the named pair in the format of ‘name=value’
into the dictionary.
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5.1.3.3 ConfigArray

The ConfigArray class holds an array of ConfigValues. Since ConfigValue is eval-
uated JIT. The values in the array need not be homogeneous, as long as the code
knows how to interpret the value of each element.

In a ConfigArray the values are normally separated by the default separator
character ‘:’ (colon). However, they also can be separated by the newline character
or other characters. The default separator can be overridden by placing the alternate
separator character immediately following the opening brace. For example ‘{|’
causes ‘|’ to be the separator for a ConfigArray object as in

array={|c:\temp\new.txt|12*3|1e-12}

A value may be repeated multiple times with the ‘*’ character followed by an
integer. In the above example, there are 5 elements in the array, with three ‘12’
values occupying the center 3 positions.

The values in a ConfigArray can be accessed just like values in a normal
std::vector type. If the index exceeds the length of the vector the last value in
the vector is returned.

5.1.3.4 Other Useful Configuration Methods

Another convenient method that exists for both ConfigParameters and ConfigArray
classes is to load a config file into an existing object as in

config.LoadConfigFile(path.c_str());

It is implemented in the ConfigParser class, from which both of these two classes
inherit.

To use this method with a ConfigArray, the file can simply contain a list of val-
ues each on its own line. Both simple and complex types such as ConfigParameters
and ConfigArray can be contained in the array using the data format summarized
in Table 5.1.

ConfigArray objects can also be converted to argvector<T> objects simply by
assigning them as

ConfigArray configLearnRatesPerMB = config("
learningRatesPerMB");

argvector<float> learnRatesPerMB = configLearnRatesPerMB;

ConfigParameters and ConfigArray objects are very flexible. However parsing
is required every time a value is accessed. Accessing argvector<T>, on the other
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hand, is very efficient. Parsing happens only when ConfigParameters or ConfigAr-
ray objects are converted to argvector<T> objects. Care should be taken when the
value is assigned to a local variable, due to lifetime issues.

5.1.3.5 Configuration Parsing Example

The following is a code snippet showing various ways of parsing configuration
files:

#include "commandArgUtil.h"

// process the command
void DoCommand(const ConfigParameters& config)
{

ConfigArray command = config("command");
for (int i=0; i < command.size(); i++)

{
//get the configuration parameters that match the

command
ConfigParameters commandParams=config(command[i]);
ConfigArray action = commandParams("action","train");

// determine the action to perform, and do it
for (int j=0; j < action.size(); j++)
{

if (action[j] == "train")
DoTrain(commandParams);

else if (action[j] == "test" || action[j] == "eval
")
DoEval(commandParams);

else
throw runtime_error("unknown action: " + action[j]

+ " in command set: " + command[i]);
}

}
}

void DoTrain(const ConfigParameters& config)
{

ConfigParameters configSGD=config("SGD");
ConfigParameters readerConfig = config("reader");

ConfigParameters configNDL = config("NDLNetworkBuilder");
IComputationNetBuilder* netBuilder = (

IComputationNetBuilder*)new NDLBuilder(configNDL);
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DataReader* dataReader = new DataReader(readerConfig);

ConfigArray learningRatesPerMBStr = configSGD("
learningRatesPerMB", "");

floatargvector learningRatesPerMB = learningRatesPerMBStr
;

ConfigArray minibatchSize = configSGD("minibatchSize",
"256");

size_t epochSize = configSGD("epochSize", "0");
if (epochSize == 0)
{

epochSize = requestDataSize;
}
size_t maxEpochs = configSGD("maxEpochs");
wstring modelPath = configSGD("modelPath");
int traceLevel = configSGD("traceLevel", "0");

SGD = sgd(learningRatesPerMB, minibatchSize, epochSize,
maxEpochs, modelPath, traceLevel);

sgd.Train(netBuilder, dataReader);

delete netBuilder;
delete dataReader;

}

As shown in this example parsing configurations files is very simple: you sim-
ply declare a variable on the stack and assign something from a ConfigParameters
class to that variable.

The configuration classes are meant to be used on the stack as shown in this
example. Storing them in member variables or allocating them using ‘new’ or
other methods is not supported. This is because an internal pointer is used to link
to parent objects of configuration classes. This allows us to trace up the stack and
look for configuration values that exist at a higher level. Since our search traverses
up the stack, we need to ensure that all the parent configuration classes still exist,
which is guaranteed if all configuration parameters are stack allocated and have
lifetimes that extend past any children.

5.2 Adding a New Computation Node

The set of computation nodes implemented in the CNTK are described in Chap-
ters 2 and 4. These computation node types are sufficient for most applications.
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However, sometimes you may need to add new computation node types due to the
special requirement you have.

Adding a new computation node involves several steps: Implementing the new
computation node type, adding the new node type to the computational network,
and adding it to the network builder.

5.2.1 Implementing a New Computation Node Type

In the current file structure, computation nodes are implemented in four files:

• ComputationNode.h: the base class ComputationNode and most computa-
tion nodes are implemented in this file.

• EvaluationCriterionNode.h: computation nodes used mainly as evaluation
criterion are implemented in this file.

• TrainingCriterionNode.h: computation nodes used mainly as training crite-
rion are implemented in this file.

• CompositeComputationNode.h: complicated computation nodes such as those
used in the convolutional neural networks are implemented in this file.

All computation node classes should be inherited from the ComputationNode class.
The simplest way to create a new computation node type is to find a node type that
is already implemented in the CNTK and use it as a template. Here let’s use the
ScaleNode as the example.

5.2.1.1 Inherits from ComputationNode<ElemType>

template<class ElemType>
class ScaleNode : public ComputationNode<ElemType>

5.2.1.2 Create Constructors

There are three constructors that need to be implemented as shown below.

ScaleNode(const short deviceId=AUTOPLACEMATRIX, const std::
wstring name = L"")

: ComputationNode(deviceId)
{

m_nodeName = (name == L""? CreateUniqNodeName() : name);
m_deviceId = deviceId;
MoveMatricesToDevice(deviceId);
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InitRecurrentNode();
}

ScaleNode(File& fstream, const size_t modelVersion, const
short deviceId=AUTOPLACEMATRIX, const std::wstring name
= L"")

: ComputationNode(deviceId)
{

m_nodeName = (name == L""? CreateUniqNodeName() : name);
LoadFromFile(fstream, modelVersion, deviceId);

}

ScaleNode(const ScaleNode<ElemType>* node, const std::
wstring& newName, const CopyNodeFlags flags)

: ComputationNode(node->m_deviceId)
{

node->CopyTo(this, newName, flags);
}

The first constructor creates the node based on a deviceId and a node name. If
node name passed in is empty a new node name will be created automatically. The
MoveMatricesToDevice(deviceId) call is important here. It will set the preferred
computation device to deviceId and move the matrices to that device. The InitRe-
currentNode() call will initialize all the members needed to handle recurrent loops
in the network.

The second constructor creates a node from a file. It passes in a file stream to
read data from and a modelVersion value to control how to load the file, in addition
to the deviceId and node name. In this example, the actual code to load the node
is in the LoadFromFile(fstream, modelVersion, deviceId) function implemented in
the base class. For some complicated nodes with additional node states, you need
to implement your own LoadFromFile function for your newly added node.

The third constructor creates a node by copying information from another node.
It passes in a node to copy from, a name for the new node, and a copy flag. The
actual code in this example is in the node->CopyTo(this, newName, flags) function
in the base class. For some complicated nodes with additional node states, you
need to implement your own CopyTo function for your newly added node.

5.2.1.3 Duplicate a Node

The Duplicate function creates a new node based on the current node. Internally, it
just calls the copy constructor.
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virtual ComputationNodePtr Duplicate(const std::wstring&
newName, const CopyNodeFlags flags) const

{
const std::wstring& name = (newName == L"")?NodeName():

newName;
ComputationNodePtr node = new ScaleNode<ElemType>(this,

name, flags);
return node;

}

5.2.1.4 Give the Computation Node a Type Name

It is important to give the new computation node type a unique name that is easy
to understand. This is implemented through a static function TypeName() and a
member function OperationName().

virtual const std::wstring OperationName() const {return
TypeName();}

static const std::wstring TypeName() {return L"Scale";}

To check whether a node is of a special type you can use the pattern

if (node->OperationName() == ScaleNode<ElemType>::TypeName()
)

5.2.1.5 Attach Input Nodes

The AttachInputs function specifies the input nodes of the current node. There are
three AttachInputs function defined in the base class. You only need to overwrite
the one with the same number of inputs as what expected from your node.

virtual void AttachInputs(const ComputationNodePtr
scalarValue, const ComputationNodePtr Value)

{
m_inputs.resize(2);
m_inputs[0] = scalarValue;
m_inputs[1] = Value;

}

5.2.1.6 Propagate Image Size Information

If your input is an image, each column of the input is treated as an three dimen-
sional image with channel, row, and column. The CopyImageSizeFromInputs
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propagate the image size information up through the network so that the users
don’t need to compute and specify them when convolutional network or pooling
methods are used. In this specific example, it called the CopyImageSizeFromInput
function implemented in the base class.

virtual void CopyImageSizeFromInputs()
{

CopyImageSizeFromInput(1);
}

5.2.1.7 Validate the Node

The Validate function is used to validate the inputs and outputs of the node. It also
sets the function value matrix’s size and copy the image size information from it’s
inputs. Note that here FunctionValues() function returns the matrix that stores the
value of the current computation node.

virtual void Validate()
{

PrintSelfBeforeValidation();

if (m_inputs.size() != 2)
throw std::logic_error("Scale operation requires two

inputs.");

if (Inputs(0)->FunctionValues().GetNumElements() == 0 ||
Inputs(1)->FunctionValues().GetNumElements() == 0)
throw std::logic_error("Scale operation: one of the

operants has 0 element.");

if (Inputs(0)->FunctionValues().GetNumRows() != 1 ||
Inputs(0)->FunctionValues().GetNumCols() != 1)
throw std::logic_error("The left value of ScaleNode

must be a scarlar value.");

FunctionValues().Resize(Inputs(1)->FunctionValues().
GetNumRows(), Inputs(1)->FunctionValues().GetNumCols
());

//left Node must be a scalar
CopyImageSizeFromInputs();

}
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5.2.1.8 Forward Evaluation

For each node type you need to implement two forward computation functions
EvaluateThisNode(), which evaluate the whole minibatch, and EvaluateThisNode(const
size_t timeIdxInSeq), which is used in the recurrent networks to evaluate the timeIdxInSeq-
th sample for all the sequences in the minibatch.

virtual void EvaluateThisNode()
{

EvaluateThisNodeS(FunctionValues(), Inputs(0)->
FunctionValues(), Inputs(1)->FunctionValues());

}

virtual void EvaluateThisNode(const size_t timeIdxInSeq)
{

Matrix<ElemType> sliceInput1Value = Inputs(1)->
FunctionValues().ColumnSlice(timeIdxInSeq *
m_samplesInRecurrentStep, m_samplesInRecurrentStep);

Matrix<ElemType> sliceOutputValue = m_functionValues.
ColumnSlice(timeIdxInSeq * m_samplesInRecurrentStep,
m_samplesInRecurrentStep);

EvaluateThisNodeS(sliceOutputValue, Inputs(0)->
FunctionValues(), sliceInput1Value);

}

static void WINAPI EvaluateThisNodeS(Matrix<ElemType>&
functionValues, const Matrix<ElemType>& input0, const
Matrix<ElemType>& input1)

{
functionValues.AssignProductOf(input0, false, input1,

false);
}

Note that both these functions call the static function

EvaluateThisNodeS(Matrix<ElemType>& functionValues, const
Matrix<ElemType>& input0, const Matrix<ElemType>& input1
)

which contains the actual evaluation code. In the EvaluateThisNode(const size_t
timeIdxInSeq) function you will notice the calls to the ColumnSlice function. As
the name suggests, this function returns a column slice of a matrix.
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5.2.1.9 Gradient Computation

Similar to the forward computation, for each node type you need to implement
two gradient computation functions ComputeInputPartial(const size_t inputIndex),
which computes the gradient for the whole minibatch with regard to the inputIndex-
th input, and ComputeInputPartial(const size_t inputIndex, const size_t timeIdx-
InSeq), which is used in the recurrent networks to compute the gradient of the
timeIdxInSeq-th sample for all the sequences in the minibatch.

virtual void ComputeInputPartial(const size_t inputIndex)
{

if (inputIndex > 1)
throw std::invalid_argument("ScaleNode operation only

takes two inputs.");

//left Node must be a scalar
if (inputIndex == 0) //left derivative
{

ComputeInputPartialLeft(Inputs(1)->FunctionValues(),
Inputs(0)->GradientValues(), GradientValues());

}
else
{
ComputeInputPartialRight(Inputs(0)->FunctionValues(),

Inputs(1)->GradientValues(), GradientValues());
}

}

virtual void ComputeInputPartial(const size_t inputIndex,
const size_t timeIdxInSeq)

{
if (inputIndex > 1)

throw std::invalid_argument("ScaleNode operation only
takes two inputs.");

//left Node must be a scalar
if (inputIndex == 0) //left derivative
{

Matrix<ElemType> sliceOutputGrad = GradientValues().
ColumnSlice(timeIdxInSeq *
m_samplesInRecurrentStep, m_samplesInRecurrentStep
);

Matrix<ElemType> sliceInput1Value = Inputs(1)->
FunctionValues().ColumnSlice(timeIdxInSeq *
m_samplesInRecurrentStep, m_samplesInRecurrentStep)
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;
ComputeInputPartialLeft(sliceInput1Value, Inputs(0)->

GradientValues(), sliceOutputGrad);
}
else
{

Matrix<ElemType> sliceInput1Grad = Inputs(1)->
GradientValues().ColumnSlice(timeIdxInSeq *
m_samplesInRecurrentStep, m_samplesInRecurrentStep
);

Matrix<ElemType> sliceOutputGrad = GradientValues().
ColumnSlice(timeIdxInSeq *
m_samplesInRecurrentStep, m_samplesInRecurrentStep
);

ComputeInputPartialRight(Inputs(0)->FunctionValues(),
sliceInput1Grad, sliceOutputGrad);

}
}

static void WINAPI ComputeInputPartialLeft(const Matrix<
ElemType>& inputFunctionValues, Matrix<ElemType>&
inputGradientValues, const Matrix<ElemType>&
gradientValues)

{
inputGradientValues += Matrix<ElemType>::

InnerProductOfMatrices(gradientValues,
inputFunctionValues);

}

static void WINAPI ComputeInputPartialRight(const Matrix<
ElemType>& inputFunctionValues, Matrix<ElemType>&
inputGradientValues, const Matrix<ElemType>&
gradientValues)

{
Matrix<ElemType>::ScaleAndAdd(inputFunctionValues.

Get00Element(), gradientValues, inputGradientValues);
}

Note that both these functions call the static functions

ComputeInputPartialLeft(const Matrix<ElemType>&
inputFunctionValues, Matrix<ElemType>&
inputGradientValues, const Matrix<ElemType>&
gradientValues)

and
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ComputeInputPartialRight(const Matrix<ElemType>&
inputFunctionValues, Matrix<ElemType>&
inputGradientValues, const Matrix<ElemType>&
gradientValues)

which contains the actual gradient computation code.

5.2.1.10 Customization of the Multi-Sequence Handling Code

If your node will generate an output (function values) that has different number of
columns (recall that each column is a sample) than the input (e.g., all the ciretrion
nodes will generate a scalar value as the output), you need to add the protected
virtual function

protected:
virtual bool UseCustomizedMultiSeqHandling() { return

true; }

This function indicates that you will use your customized code to handle the
condition in which multi-sequences are used in each minibatch (e.g., when training
an RNN). You need to add the MaskToZeroWhenLabelAndFeatureMissing calls at
the approriate places in your code to mask out both the function values and the
gradient values when a segment of the minibatch does not have features/labels. An
example of the customized handling code can be found inside the CrossEntropy-
WithSoftmaxNode.

5.2.1.11 The CNTKMath Library

In both the forward evaluation and backward gradient computation functions we
need to use matrix operations to complete the computation. In the CNTK all the
math operations are implemented in a separate DLL CNTKMath.dll. The library
supports CPU and GPU computation with sparse and dense matrix formats.

The math library contains a wrapper class called Matrix<ElemType>, where
ElemType is either float or double. This Matrix<ElemType> class hides the differ-
ences between the multiple matrix implementations and takes care of data transfers
between GPU and CPU. GPUs and CPUs have different memory spaces, and copy-
ing data between them is necessary to access or modify the data from either device.
The library attempts to keep data on the GPU as much as possible if a GPU is being
used.

When data are accessed or modified from the CPU, if the data is currently on
the GPU the matrix will automatically be relocated to the CPU, and relocated back
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when the GPU attempts to access or modify the data. Currently the entire matrix
object is transferred, so care should be taken when accessing matrix data from the
CPU, e.g., when using the element value access operators. Each such memory
transfer will cause significant slow down during training and testing.

If the operations needed by your node are already implemented in the Ma-
trix<ElemType> class you can just use them. If, however, they are not imple-
mented yet, you will need to implement the related functions in the math library,
for both CPU and GPU. It is to be advised that you should not use operations that
returns a value instance of the matrix class except the ColumnSlice method. This
is because those objects will be created and released after each minibatch, causing
inefficiency, and will not update values passed through the ColumnSlice function.

5.2.2 Adding the New Node Type to the Computational Network

Once the new computation node type is implemented, we need to make them avail-
able in the computational network. This is accomplished by adding them in three
functions in the ComputationNetwork.h file.

The first function is CreateComputationNode as shown below. This function
allows a programmer to create a new node of a specific type.

ComputationNodePtr CreateComputationNode(const std::wstring
nodeType, const std::wstring nodeName)

{
ComputationNode<ElemType>* newNode;

if (nodeType == NegateNode<ElemType>::TypeName())
newNode = new NegateNode<ElemType>(m_deviceId,

nodeName);
//other node types

else if (nodeType == ScaleNode<ElemType>::TypeName())
newNode = new ScaleNode<ElemType>(m_deviceId, nodeName

);
//other node types

}

The second function is CreateNodeFromFile as shown below. This function
allows a programmer to create a new node of a specified type from a file stream.

ComputationNode<ElemType>* CreateNodeFromFile(const std::
wstring nodeType, const std::wstring nodeName, File &
fstream, size_t modelVersion)

{
ComputationNode<ElemType>* newNode = nullptr;
if (nodeType == LearnableParameter<ElemType>::TypeName())
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newNode = new LearnableParameter<ElemType>(fstream,
modelVersion, m_deviceId, nodeName);

//other node types
else if (nodeType == ScaleNode<ElemType>::TypeName())

newNode = new ScaleNode<ElemType>(fstream,
modelVersion, m_deviceId, nodeName);

//other node types
}

The third function is type specific. For the ScaleNode class we defined the
Scale operation as shown below.

ComputationNodePtr Scale (const ComputationNodePtr scalar,
const ComputationNodePtr matrix, const std::wstring
nodeName = L"")

{
ComputationNodePtr newNode(new ScaleNode<ElemType>(

m_deviceId, nodeName));
newNode->AttachInputs(scalar, matrix);
AddNodeToNet(newNode);
return newNode;

}

This allows programmers to create nodes directly through operations. For ex-
ample, we can use

sNode = Scale(s, m, L"scale1")

to create a ScaleNode named scale1 in the network and referenced as sNode in the
program. This node scales the matrix m with a scalar s.

5.2.3 Adding the New Node Type to the Network Definition Language

End users create computation nodes through network builders. For this reason, we
also need to add the node type to the network description language (NDL). This
is done by modifying the CheckFunction function to make Scale a valid function
name.

bool CheckFunction(std::string& p_nodeType, bool*
allowUndeterminedVariable)

{
std::wstring nodeType = msra::strfun::utf16(p_nodeType);
bool ret = false;

if (allowUndeterminedVariable)

*allowUndeterminedVariable = true;
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//other node types
else if (EqualInsensitive(nodeType, ScaleNode<ElemType>::

TypeName()))
ret = true;

//other node types and codes
}

Sometimes you may also need to modify the

virtual void Evaluate(NDLNode<ElemType>* node, const wstring
& baseName, const NDLPass pass)

function in the SynchronousExecutionEngine.h file to handle special parameters.

5.2.3.1 NDL Processing Phases

The ability to describe a network architecture in NDL (Network Description Lan-
guage) is one of the major features of CNTK. However, it is not immediately obvi-
ous to the developer looking at the code how it all works. Here we briefly describe
the inner workings of NDL processing in CNTK.

NDL is based on the same configuration parser that is used for config files
and MEL (Model Editing Language). While this is convenient to share code, it
also makes things a little less clear when viewing the code. The configuration
file classes, MEL class, and NDL classes all inherit from ConfigParser, which
provides the basic parsing, bracket matching, and other common features (quote
handling, etc.). The parsing engine implemented in ConfigParser calls back to a
virtual method called ParseValue() when it has a token that needs to be interpreted.
So ParseValue() in the NDLScript class is the main location where interpretation
of tokens takes place.

NDL supports Macros, which makes things much more convenient, but a bit
messier for the developer to deal with. All the macros are parsed and stored in
a global script so they can be accessed by any NDL script. It also means that
you don’t want to load or define a set of macros more than once, or you will get
“function already exists” errors.

The processing of NDL proceeds through the following phases:

1. Parsing the script

2. Evaluation (initial pass) – create ComputationNodes for all NDLNodes that
require it

3. Evaluation (second pass) – connect the inputs of the ComputationNodes
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4. Validate the network – This also allocates all the matrix classes to their cor-
rect dimensions, and computes dimensions derived from input nodes.

5. Evaluation (final pass) – All operations that must have the matrix values
present occur here. For example, matrix initialization happens here.

There is a helper class in the NDLUtil class, which will take care of executing
through all phases. It also tracks how far along in the current processing phase a
script has progressed. Processing can continue statement by statement as needed.
This is how in-line NDL is processed.

5.2.3.2 Parsing

The script in question is first parsed, and as each macro definition, macro call,
parameter, variable, or function call is encountered an NDLNode is created. This
NDLNode describes the entity and a reference is stored in the NDLScript class
which owns it so it can be freed at some later point in time. If the NDLNode is an
executable statement, it will be added in order to the list of statements to execute.
All variable names used in a script will be added to a symbol table in the NDLScript
class that owns the NDLNode.

If the NDLNode is a macro or function call its parameters will be parsed and
added to a parameter list in the NDLNode. Note that parameters may actually be
other function and macro calls. The actual parameter names used in the call and
the names used in the macro that will be called are recorded.

If the NDLNode is a macro, it will have its own NDLScript, and contain its own
list of executable statements. It will also be stored in the global script repository,
which is just a global NDLScript class.

5.2.3.3 Evaluation (Initial Pass)

Each pass evaluates the entire script, but only certain actions are performed based
on what pass is being executed. The main purpose of this pass is to create a com-
putation node for every NDL node that requires one. Effectively every “Function
call” in NDL maps to a computation node. The full “dot path” will be the name of
the node in the computational network. Although all the parameters are evaluated
in NDL, only function calls will create computation nodes.

5.2.3.4 Evaluation (Second Pass)

This pass goes through the entire evaluation process again, but this time all com-
putation nodes should already exist. The main purpose of this pass is to hook up
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all the inputs between nodes. At the end of this pass the computational network is
fully connected and complete.

Doing this in a separate pass allows nodes to be referenced before they are
actually defined in the NDL Script. This is a necessary feature for recursive neural
networks with a DelayNode.

5.2.3.5 Validation

Validation ensures that the network is fully connected and that all necessary net-
work nodes exist. It also ensures that the dimensions of the matrices passed to
nodes are compatible with the nodes and enough memory is allocated for the ma-
trices. In addition, the existence of special nodes such as CriteriaNode, Features,
Labels, and Output are checked.

5.2.3.6 Evaluation (Final Pass)

This pass does special processing, such as matrix initialization, that requires the
matrices to exist. As an example there is an optional parameter for the Parameter()
function that allows a parameter to be initialized in various ways (zero, random
values, from a file). Since matrix initialization requires the matrix to be there, it is
done in the final pass.

5.3 Adding a New Training Algorithm

To add a new training algorithm to the CNTK you can use the stochastic gradient
algorithm (SGD) as a reference. Note that the computational network only provides
the first-order gradient information, so only algorithms that depend on the first-
order gradient (e.g., quasi-second-order algorithms such as L-BFGS) can be easily
implemented in the CNTK. In the following we list the main steps in a typical
training algorithm.

5.3.1 Prepare the Mapping from Node Names to Matrices for Fea-
tures and Labels

Since features and labels are loaded from data files and in the IDataReader interface
we need to pass in the map from node names to matrices to read features and labels,
in a typical trainer the first step is to create this map as shown in the following
sample, where net is a Computational Network object.

std::vector<ComputationNodePtr> & FeatureNodes = net.
FeatureNodes();
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std::vector<ComputationNodePtr> & labelNodes = net.
LabelNodes();

std::map<std::wstring, Matrix<ElemType>*> inputMatrices;
for (size_t i=0; i<FeatureNodes.size(); i++)
{

inputMatrices[FeatureNodes[i]->NodeName()] = &
FeatureNodes[i]->FunctionValues();

}

for (size_t i=0; i<labelNodes.size(); i++)
{

inputMatrices[labelNodes[i]->NodeName()] = &labelNodes[i
]->FunctionValues();

}

5.3.2 Evaluate Precomputed Nodes

Before training happens, we need to evaluate the precomputed nodes. The pre-
computed nodes are typically used to compute the mean and standard deviations
of input features so that we may normalize the features or get the frequency infor-
mation of labels, which can be used as the prior probability of the output nodes. It
is advised that you save a model after each major model update so that you may
re-start from a checkpoint file in case you cannot finish the whole training at once.

if (PreCompute(net,trainSetDataReader, FeatureNodes,
labelNodes,inputMatrices) || startEpoch == 0)

{
net.SaveToFile(GetModelNameForEpoch(int(startEpoch)-1));

}

5.3.3 Main Loop

Most of the training happens inside the loop through epochs. In the following
example we also show that you can specify some special properties for nodes such
as convolutional node and dropout node. Depends on whether these properties
should be set to different values for different epoch they can be handled either
inside or outside of the epoch loop.

std::vector<ComputationNodePtr> & criterionNodes =
GetTrainCriterionNodes(net);

std::vector<ComputationNodePtr> & evaluationNodes =
GetEvalCriterionNodes(net);
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SetMaxTempMemSizeForCNN(net, criterionNodes[0],
m_maxTempMemSizeInSamplesForCNN);

for (int i=int(startEpoch); i<int(m_maxEpochs); i++)
{

SetDropoutRate(net, criterionNodes[0], m_dropoutRates[i],
prevDropoutRate, dropOutSeed);

DecideLearningRate();
TrainOneEpoch();

}

5.3.4 Train One Epoch

The TrainOneEpoch function contains your core training algorithm. It typically
looks like following:

//start the minibatch loop in the data reader.
trainSetDataReader->StartMinibatchLoop(mbSize, epochNumber,

epochSize);

while (trainSetDataReader->GetMinibatch(inputMatrices))
{

//update the time stamp of the input nodes for re-
evaluation
UpdateEvalTimeStamps(FeatureNodes);
UpdateEvalTimeStamps(labelNodes);

//set actual minibatch size, needed since delay nodes
cannot infer it automatically

size_t actualMBSize = net.GetActualMBSize();
net.SetActualMiniBatchSize(actualMBSize);

//set the number of samples for each gradient
computation in the truncated BPTT.

net.SetActualNbrSlicesInEachRecIter(trainSetDataReader
->NumberSlicesInEachRecurrentIter());

//set the sentence end information for multi-sequence
RNN training

trainSetDataReader->SetSentenceEndInBatch(net.
m_sentenceEnd);
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//compute the gradients, which will be stored in the
GradientValues() of each node

net.ComputeGradient(criterionNodes[0]);

//you can do statistics computation here for
evaluation error and training error

//Update the model based on the gradient computed
UpdateModel();

}

The StartMinibatchLoop call will inform the reader how to prepare for the
minibatches. The code then get minibatches until all minibatches are fetched for
the epoch. Once a minibatch is fetched from the reader, you need to call the Up-
dateEvalTimeStamps function to inform the computational network that the values
of these nodes have been changed so that all nodes that depend on these nodes will
be recomputed when the forward computation is carried out. You need to do the
same thing for all the model parameters when they are updated by your training
algorithm.



Chapter 6

Speech Recognition Decoder
Integration

6.1 Argon Speech Recognition Decoder

Argon is a dynamic decoder modeled after (Soltau & Saon, “Dynamic Network
Decoding Revisited,” ASRU, 2009). To use Argon, one must supply a represen-
tation of the acoustic search space in the form of a weighted finite state acceptor
that represents all possible word sequences and their associated context-dependent
HMM state sequences. This is H◦C◦L of Mohri et al, (“Weighted Finite State
Transducers in Speech Recognition,” Computer Speech & Language, 2002) . As
a pre-processing step, Argon will convert the AT&T format acceptor into a binary
image for its own internal use. Additionally, one supplies an acoustic model as
trained by CNTK, a source of acoustic features, and a language model. Optionally,
a set of language models and their interpolation weights may be specified.

As output, Argon produces one-best word hypotheses and lattices. Lattices are
produced with state-level alignments, and the one-best hypotheses can optionally
be produced with state-level alignments as well.

Argon is a token-passing decoder. It works by maintaining a set of tokens, each
of which represents a partial path. Each token maintains a language model history
state, a pointer to its location in the decoding graph, and a path score. At each time
frame, all the tokens from the previous frame are advanced over emitting arcs in
the decoding graph, and then across word arcs. When a token finishes a word (i.e.
advances across a word arc), the language model is consulted, and the path score
is adjusted with the language model probability.

Argon uses a simple form of language model lookahead. By default, the search
space H◦C◦L includes the most optimistic log-probability that a word can have,
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given the language model. When a word-end is encountered, the remainder of the
language model log-probability is added. To prevent over-pruning at these jumps,
we employ the notion of language-model slack in pruning. Each token maintains a
slack variable, and when a language model score is encountered, the slack variable
is incremented by this amount. It is also multiplied by a number slightly less than
one at each frame so that it decreases exponentially. Tokens that fall outside the
beam by less than the slack amount are not pruned. This effectively smooths the
effect of adding language model scores at word ends.

6.1.1 Representing the Acoustic Search Space

Argon represents the acoustic search space as a determinized, minimized finite
state transducer, encapsulating H◦C◦L. Input arcs are labeled with context depen-
dent HMM states, and output arcs with words. Every path from the start state to
one of the final states represents a sequence of words beginning with “begin-of-
sentence” or <s> and ending with “end-of-sentence” or </s>. The sequence of in-
put labels encountered on such a path represents the sequence of context-dependent
HMM states of the words, as determined by the lexicon and acoustic context model.
A fragment of a search graph is shown in Figure \ref{fig:dcdgraph}.

Minimization of a transducer repositions the output labels in the process of
minimizing the transducer size. This necessitates re-aligning the output to syn-
chronize the word labels with the state sequence. Rather than allowing arbitrary
label shifting, for all words that have two or more phonemes, Argon outputs word
labels immediately before the last phone. This allows for a high degree of com-
pression, good pruning properties, and predictable label positions.

Since H◦C◦L does not represent the language model, we have found it un-
necessary to accommodate <epsilon> arcs in the decoding graph, thus somewhat
simplifying the decoder implementation. Thus, it is a requirement that H◦C◦L
contain only HMM states and word labels. Our reference scripts achieve this with
the OpenFST remove-epsilon operation.

6.1.1.1 From HTK Outputs to Acoustic Search Space

CNTK and Argon use acoustic models based on HTK decision trees. In the first
part of the acoustic model building process, context-independent alignments are
made with HTK, and a decision tree is built to cluster the triphone states. After a
couple of passes of re-alignment, a model file and state level alignments are written
out. CNTK uses the alignments to train a DNN acoustic model.

The simplest way to build an acoustic model is to provide an HTK decision tree
file, a lexicon, a file with pronunciation probabilities, and a model MMF file. The
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MMF file is only used to extract transition probabilities, and as an option, these
can be ignored, in which case the MMF is unnecessary. We provide sample scripts
which process the lexicon and decision tree to produce H◦C◦L.

Our sample script imposes two constraints:
1) 3-state left-to-right models except for silence
2) The standard HTK silence model, which defines a “short-pause” state and

ties it to the middle state of silence
In the output, short-pause and silence are optional between words. All hypothe-

ses start with <s> and end with </s>, both of which are realized as silence.

6.1.2 Representing the Language Model

The language model is dynamically applied at word-ends. Language model looka-
head scores are embedded in the graph, and compensated for at word ends, when
multiple language models may be consulted and interpolated. In the case that mul-
tiple language models are used, they are listed in a file, along with their interpola-
tion weights; this file is given to Argon as a command-line parameter.

6.1.3 Command-Line Parameters

6.1.3.1 WFST Compilation Parameters

These parameters are used in the graph pre-compilation stage, when a fsm pro-
duced by a tool such as OpenFST is converted into a binary image that is conve-
nient to read at runtime.

[-infsm (string: )]: gzipp’d ascii fsm to precompile
[-lookahead-file (string: )]: file with the lookahead scores for each word, if

lookahead was used
[-precompile (bool: false)]: precompile the graph? true indicates that precom-

pilation should be done
[-transition-file (string: )]: transition probability file for use in precompilation
[-graph (string)]: decoding graph to read/write

6.1.3.2 Parameters specifying inputs

These parameters are related to the inputs used in decoding. Their use is exempli-
fied in the sample scripts.

[-infiles (string: )]: file with a list of mfcc files to process
[-graph (string)]: decoding graph to read/write
[-lm (string: )]: language model to use in decoding; use when there is one LM

only
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[-lm-collection (string: )]: file specifying a set of language models to use for
decoding

[-sil-cost (float: 1.0)]: cost charged to silence
[-am (string: )]: binary acoustic model to use in decoding
[-cntkmap (string: )]: mapping from output names in decoding graph to dnn

output nodes
[-dnn_window_size (int: 11)]: number of consecutive acoustic vectors to stack

into one context-window input, depends on acoustic model

6.1.3.3 Parameters specifying outputs

These parameters specify the outputs that Argon creates at runtime.
[-outmlf (string: )]: store recognition results in HTK-style master label format

file
[-detailed-alignment (bool: false)]: enables state-level recognition output
[-lattice-prefix (string: )]: path and filename prefix for output lattices; will be

post-pended with a number

6.1.3.4 Search Parameters

These parameters control Argon’s search
[-acweight (float: 0.0667)]: acoustic model weight. language model weight is

always 1
[-beam (float: 15)]: absolute beam threshold
[-alignmlf (string: )]: source transcription for forced alignment
[-max-tokens (int: 20000)]: number of tokens to keep at each time frame
[-word_end_beam_frac (float: 0.33333)]: beam at word ends is this times the

normal beam

6.2 Constructing a Decoding Graph

As described above, the decoding graph is a representation of how sequences of
acoustic model states form sequences of words, with associated path scores that are
a combination of the acoustic model state transition probabilities and the language
model lookahead scores. This section describes two different decoding graphs: a
simple, context-independent phonetic recognition graph suitable for TIMIT recog-
nition, and a more complex, cross-word triphone large vocabulary graph suitable
for Wall Street Journal or Aurora-4 recognition tasks.

The decoding graph includes scores that represent the most optimistic score
that can be achieved by a word. Scripts extract that score from an ARPA language
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model, and put it in a file that lists the most optimistic score for each word. The
optimistic scores are a simple context-independent form of language model looka-
head. A smoothing mechanism is used internally in the decoder to “smear” the
residual LM score across multiple frames after a word end.

6.2.1 Context-Independent Phonetic Recognition

To build the TIMIT graph, only three input files are needed: the model state map,
the state transitions, and a language model.

The scripts assume each context-indepenent phone is represented by a three
state, left to right, hidden markov model. The names of these states should be in
a “model state map” file that has one line for every model. The first column is
the name of the model, and subsequent columns are the names of the states, in
left to right order. The transition probabilites between these states are stored in a
separate “state transitions” file. Every state of the acoustic model should have one
line, whose first column is the name of the state, and subsequent columns are the
natural logarithm of the self and forward transition probabilities.

The language model should be an ARPA-style language model over the phone
model names. Additionally, it should include the unknown word <UNK>, and
the beginning and ending sentence markers <s> and </s>. For TIMIT data, they
should represent the h# at the beginning and the h# at the end of every utterance,
respectively, and h# should not exist in the language model.

The DecodingGraph.mak file demonstrates the process of turning these inputs
into a proper Argon decoding graph. When the makefile is successfully run, the
current working directory should contain a decoding graph file i_lp.final.dg that is
suitable for phonetic decoding.

6.2.2 Cross-Word Context-Dependent Large Vocabulary Decoding

Building this style of graph is somewhat more involved, and divided into two
stages. In the first stage, information about the graph structure is extracted from
a donor HTK format acoustic model, and put into a distilled representation. In
the second stage, this representation is used to construct the FST and compile it
into Argon decoding graph format. We imagine that specialized first stages can be
constructed for different styles of input, other than HTK format donor models.

6.2.2.1 Stage One: Extract structure from HTK donor model

The prerequisites for this process are as follows:
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A pronunciation lexicon, an ARPA-format ngram language model, a senone
map file, and an ASCII format HTK donor model, with associated list of all possi-
ble logical model names and their associated physical model names.

6.2.2.2 Stage Two: Build and Compile Graph

The L transducer is built from the normalized lexicon. The H transducer is built
from the triphone to senone mapping file. The C FST is made to cover all possible
triphone contexts that might occur on the input side of L.

H, C, and L are composed, determinized and minimized. Then, the FST is
made into an FSA by moving every non-epsilon output token onto its own arc on
the same path. The silence models between words are made optional, the language
model lookahead scores are applied, and weight pushing is used to take these scores
as early as possible on each path through the FSA.

The end result is a compiled graph, where every path represents a sequence
of acoustic model states interspaced with the word sequence they represent. The
score of the path is equal to the individual HMM transition scores combined with
the language model lookahead scores.

6.2.3 Running Argon

To decode, the following parameters to Argon should be specified: -graph, -lm, -
am, -cntkmap, -infiles, and -outmlf. See above for descriptions of these parameters.

The decoder uses a Viterbi beam search algorithm, in which unlikely hypothe-
ses are pruned at each frame. The -beam parameter prevents unlikely hypotheses
from being pursued. Any hypothesis that differes from the best hypothesis by
more than this amount will be be discarded. The -max-tokens parameter controls
the number of active hypotheses. If the -beam parameter causes more than max-
tokens hypotheses to be generated, then only this many of the best hypotheses will
be retained. Decreasing either of these parameters will speed up the search, but at
the cost of a higher likelihood of search errors. Increasing these parameters has the
opposite effect.

The -graph parameter tells Argon which compiled decoding graph should be
used. The -lm should indicate an ARPA format ngram languag emodel.

The -am and -cntkmap should point to the final CNTK compiled acoustic
model, and to its associated mapping file.

The -acweight parameter controls the relative weight of the acoustic model
scores to the language and HMM transition scores. Increasing this value will cause
more weight to be placed on the acoustic model scores. The useful range for this
parameter is between 0.1 and 2.0.
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The -infiles parameter lists the files to be decoded. It is expected that these
files are in HTK format and are ready to be fed into the input layer of the CNTK
acoustic model.

To get a more detailed state-level alignment, specify -detailed-alignment true.



Chapter 7

Example Setups

7.1 Acoustic Model

In this section we describe how CNTK can be used to build several standard mod-
els that can be used for acoustic modeling for speech recognition applications. All
examples are based on the TIMIT corpus for phonetic recognition but can easily
be modified for use for large vocabulary continuous speech recognition. The only
significant change is that context-indepenent phonetic states used in the TIMIT ex-
ample would be replaced by context-dependent senone targets for large vocabulary
tasks. We note that these examples are not meant to be representative of state of
the art performance, but rather to demonstrate how CNTK can be used in a variety
of speech recognition applications. All examples are located in the ExampleSetups
folder (ExampleSetups\ASR\TIMIT)

7.1.1 Training a DNN with SimpleNetworkBuilder

The simplest way to create an acoustic model with CNTK is to use the SimpleNet-
workBuilder. This network builder constructs a fully-connected feed-forward net-
work of user-specified depth and size. The configuration file is shown below. As
you can see there are several key blocks of data specified

• SimpleNetworkBuilder: the overall network topology is specified here using
the layerSizes parameter. In this example, the network has 792 inputs (an
11-frame context window of a 72-dimensional feature vector), 3 hidden lay-
ers of 512 sigmoidal neurons and 183 outputs, corresponding to the TIMIT
phoneme states (3 x 61 phonemes). The cross entropy is the criterion for
training and the frame error rate will also be monitored during training us-
ing the evalCriterion parameter. The input data will be mean and variance
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normalized since applyMeanVarNorm has been set to true. In addtion, if
needPrior is set to true, the prior probablities of the labels will be computed
and a ScaledLogLikelihood node in the network will be automatically cre-
ated. This is important if this netwok will be used to generate acoustic scores
in a speech recognition decoder.

• SGD: this block specifies the parameters for stochastic gradient descent op-
timization. In this example, a total of 25 epochs will be run using a fixed
learning schedule, with a learning rate of 0.8 for the first epoch, 3.2 for the
next 14 epochs, and then 0.08 for all remaining epochs. A minibatch size
of 256 will be used for the first epoch, and all remaining epochs will use a
minibatch size of 1024. A momentum value of 0.9 will also be used.

• reader: this example uses the HTKMLFReader. For SimpleNetworkBuilder,
the inputs must be called “features” and the output labels must be called
“labels”. The scpFile contains the list of files to be processed and the mlfFile
contains the labels for these files. More details about the HTKMLFReader
can be found in Section 1.4.2.

TIMIT_TrainSimple=[
action="train"
modelPath="$ExpDir$\TrainSimpleNetwork\model\cntkSpeech.

dnn"
deviceId=$DeviceNumber$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=792:512*3:183
trainingCriterion="CrossEntropyWithSoftmax"
evalCriterion="ErrorPrediction"
layerTypes="Sigmoid"
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true

]
SGD=[
epochSize=0
minibatchSize=256:1024
learningRatesPerMB=0.8:3.2*14:0.08
momentumPerMB=0.9
maxEpochs=25

]
reader=[
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readerType="HTKMLFReader"
readMethod="rollingWindow"
miniBatchMode="partial"
randomize="auto"
verbosity=1

features=[
dim=792
scpFile="$ScpDir$\TIMIT.train.scp.fbank.fullpath"

]

labels=[
mlfFile="$MlfDir$\TIMIT.train.align_cistate.mlf.cntk"
labelDim=183
labelMappingFile="$MlfDir$\TIMIT.statelist"

]
]

]

7.1.2 Adapting the learning rate based on development data

In addition to using a fixed learning schedule, CNTK can adjust the learning rate
based on the performance on a held out development set. To do this, the develop-
ment set needs to be specified using a second data reader known as a “cvReader”
and the appropriate learning rate adjustment parameters need to specified using an
“AutoAdjust” configuration block within the SGD configuration block. For exam-
ple, the following cvReader could be added to the configuration file in the previous
example as follows:

cvReader=[
readerType="HTKMLFReader"
readMethod="rollingWindow"
miniBatchMode="partial"
randomize="auto"
verbosity=1

features=[
dim=792
scpFile="$ScpDir$\TIMIT.dev.scp.fbank.fullpath"

]

labels=[
mlfFile="$MlfDir$\TIMIT.dev.align_cistate.mlf.cntk"
labelDim=183
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labelMappingFile="$MlfDir$\TIMIT.statelist"
]

]

The learning rate adjustment is specified within the SGD block as follows.

SGD=[
epochSize=0
minibatchSize=256:1024
learningRatesPerMB=0.8:3.2*14:0.08
momentumPerMB=0.9
maxEpochs=25

AutoAdjust=[
autoAdjustLR="adjustAfterEpoch"
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382

]
]

In this example, the learning rate will be reduced by a factor of 0.5 if the error
on the held out data gets worse. While the learning rate can also be increased based
on the performance on a held-out set, this is effectively turned off by setting the
criterion for increasing the learning rate to a high value.

7.1.3 Training a DNN with NDLNetworkBuilder

While standard feedforward architectures are simple to specify with SimpleNet-
workBuilder, NDLNetworkBuilder can be used when alternative structures are de-
sired. In this case, the SimpleNetworkBuilder configuration block in the previous
example is replaced with an NDLNetworkBuilder block.

NDLNetworkBuilder=[
ndlMacros="$NdlDir$\default_macros.ndl"
networkDescription="$NdlDir$\classify.ndl"

]

In this example, a file contained several NDL macros will be loaded and then
the NDL file containing the actual network description will be loaded. Note that
macros can be defined in both files. For example, commonly used macros used
across of variety of experiments can be specified by ndlMacros while macros spe-
cific to a particular network description can be specified within the networkDe-
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scription file. This example creates the exact same network as the first case, but
demonstrates how it can be done using NDL.

One key thing to note is that when NDL is used, there are no longer restrictions
on the names for the network’s inputs and outputs. In this case, the inputs are
associated with a node called “myFeatures” and the labels are associated with a
node called “myLabels”. Note that these new node names need to be used in the
reader block in the main configuration file.

7.1.4 Training an autoencoder

Training an autoencoder is straightforward using either SimpleNetworkBuilder
or NDLNetworkBuilder by using the SquareError criterion node rather than the
CrossEntropyWithSoftmax criterion node. In this example, the network is con-
structed with NDL. Below is a snippet from the NDL file for this example. This
autoencoder has three hidden layers including a middle bottleneck layer of 64 neu-
rons. A macro is defined to peform mean and variance normalization and it is
applied to both the input and target features. Also,

load=ndlMacroDefine
run=ndlCreateNetwork

ndlMacroDefine=[
MeanVarNorm(x)
{
xMean = Mean(x)
xStdDev = InvStdDev(x)
xNorm=PerDimMeanVarNormalization(x,xMean,xStdDev)

}

MSEBFF(x,r,c,labels)
{
BFF=BFF(x,r,c)
MSE=SquareError(labels,BFF)

}
]
ndlCreateNetwork=[
featInDim=792
featOutDim=792
hiddenDim=512
bottleneckDim=64
featIn=Input(featInDim,tag="feature")
featOut=Input(featOutDim,tag="feature")
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featNormIn = MeanVarNorm(featIn)
featNormOut = MeanVarNorm(featOut)
L1 = SBFF(featNormIn,hiddenDim,featInDim)
L2 = SBFF(L1,bottleneckDim,hiddenDim)
L3 = SBFF(L2,hiddenDim,bottleneckDim)
MeanSqErr = MSEBFF(L3, featOutDim, hiddenDim, featNormOut,

tag="criterion")
OutputNodes=(MeanSqErr.BFF.FF.P)
EvalNodes=(MeanSqErr)

]

For an autoencoder the reader will process features for both the input and de-
sired output (targets) for the network. Thus, the reader configuration block in the
main configuration file has two entries “featIn” and “featOut” that both have scp-
Files specified. In this case, they point to the same file, but this is not required. For
example, if a network was trained for feature enhancement, then featIn could be
reading the noisy features while featOut would be reading the desired clean feature
targets.

featIn=[
scpFile=$ScpDir$\TIMIT.train.scp.fbank.fullpath
dim=792

]

featOut=[
scpFile=$ScpDir$\TIMIT.train.scp.fbank.fullpath
dim=792

]

7.1.5 Using layer-by-layer discriminative pre-training

It is well known that deep networks can be difficult to optimize, especially when
a limited amount of training data is available. As a result, a number of aproaches
to initializing the parameters of these networks have been proposed. One of these
methods is known as discriminative pre-training. In this approach, a network with a
single hidden layer is trained starting from random initialization. Then the network
is grown one layer at a time, from one hidden layer to two hidden layers and so on.
Each model is initialized using the parameters learned from the previous model
and random initialization for of the topmost output layer.

This process can be performed in CNTK using alternating steps of model train-
ing and model editing using the Model Editing Language (MEL). The config file
example shows how to do this using a series of execution commands. The top level
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command contains five configuration blocks to execute in sequence,

command="TIMIT_DiscrimPreTrain1:TIMIT_AddLayer2:
TIMIT_DiscrimPreTrain2:TIMIT_AddLayer3:TIMIT_Train3"

This main configuration file is a good example of how certain config blocks can
be placed at the top level of the config file. In this example, the SGD and reader
blocks are shared across all stages of processing. The first three configuration
blocks to be processed are shown below:

TIMIT_DiscrimPreTrain1=[
action="train"
modelPath="$ExpDir$\TrainWithPreTrain\dptmodel1\cntkSpeech

.dnn"
NDLNetworkBuilder=[
NetworkDescription="$NdlDir$\create_1layer.ndl"

]
]

TIMIT_AddLayer2=[
action="edit"
CurrLayer=1
NewLayer=2
CurrModel="$ExpDir$\TrainWithPreTrain\dptmodel1\cntkSpeech

.dnn"
NewModel="$ExpDir$\TrainWithPreTrain\dptmodel2\cntkSpeech.

dnn.0"
editPath="$MelDir$\add_layer.mel"

]

TIMIT_DiscrimPreTrain2=[
action="train"
modelPath="$ExpDir$\TrainWithPreTrain\dptmodel2\cntkSpeech

.dnn"
NDLNetworkBuilder=[
NetworkDescription="$NdlDir$\create_1layer.ndl"

]
]

In the first block, TIMIT_DiscrimPreTrain1, the initial model is trained ac-
cording to the network description language file “create_1layer.ndl” and stored in
a folder called dptmodel1. Next, in TIMIT_AddLayer2, the previous model is
edited according to the MEL script “add_layer.mel” which will add a layer to the
existing model and write the new model out to a new model file. This script will
process the variables set in this configuration block that refer to the current layer,
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new layer, current model, and new model. Note that the new model has an ex-
tension “0” and has been placed in a folder called “dptlayer2”. Now, the third
configuration block “TIMIT_DiscrimPreTrain2” will train a model to be located
in the “dptmodel2” folder. Because, the previous step created a model in that lo-
cation with the extension “0”, the training tool will use that model as the initial
model rather than creating a model from scratch. This process repeats itself until
the network contains the total number of layers desired.

To see how a new layer is added, we can look at the MEL script “add_layer.mel”

m1=LoadModel("$currModel$", format="cntk")
SetDefaultModel(m1)
HDim=512
L$newLayer$=SBFF(L$currLayer$.S, HDim, HDim)
SetInput(CE.*.T, 1, L$newLayer$.S)
SetInput(L$newLayer$.*.T, 1, L$currLayer$.S)
SaveModel(m1, "$newModel$", format="cntk")

In this script, the initial model is loaded and set as the default model. A new
layer is created using the macro SBFF (the default macros have been loaded in the
top-level configuration file). Then the new connections are made, with the input
to the cross entropy layer of the existing model connected to the output of the new
layer, and the input of the new layer connected to the output of the previous model’s
top layer. The new model is then saved to the specified file. Note that through the
use of configuration variables, this same script can be reused anytime a new layer
can be added. If different layer sizes were desired, the HDim variable could be set
by the higher level configuration file in the the appropriate edit block, rather than
from within the MEL script.

7.1.6 Training a network with multi-task learning

One interesting approach to network training is multi-task learning, where the net-
work is trained to optmize two objective functions simultaneously. This can be
done in CNTK through the appropriate use of NDL. Let’s assume that we have a
network specified in NDL that has three hidden layers and output of the third hid-
den layer is defined as L3. Furthermore, let’s assume we want to create a network
that optimizes a weighted combination of phoneme classification and the dialect
region of the speaker (dr1, dr2, etc in the TIMIT corpus). To do this, we first define
a macro that can compute the weighted sum of two nodes as follows:

WtObjFcn(o1,w1,o2,w2)
{
A1=Constant(w1)
A2=Constant(w2)
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T1=Times(A1,o1)
T2=Times(A2,o2)
O=Plus(T1,T2)

}

This macro can then be used to create a network for multi-task learning.

#objective function 1
BFF1=BFF(L3,LabelDim1,HiddenDim)
CE1=CrossEntropyWithSoftmax(labels,BFF1.FF.P,tag="eval")
FER1 = ErrorPrediction(labels,BFF1.FF.P,tag="eval")

# objective function 2
BFF2=BFF(L3,LabelDim2,HiddenDim)
CE2=CrossEntropyWithSoftmax(regions,BFF2.FF.P,tag="eval")
FER2 = ErrorPrediction(regions,BFF2.FF.P,tag="eval")

# weighted final objective function
Alpha1=0.8
Alpha2=0.2
ObjFcn = WtObjFcn(CE1,Alpha1,CE2,Alpha2,tag="criterion")

# for decoding
ScaledLogLikelihood=Minus(BFF1.FF.P, LogPrior)

# root Nodes
OutputNodes=(ScaledLogLikelihood)

The output of the hidden layer L3 is connected to two cross entropy nodes,
one that predicts “labels” which correspond to phonetic labels in this example,
and one that predict “region”, the dialect region of the speaker. The final criterion
used for training is the weighted combination of these two criteria. By tagging
the individual CrossEntropyWithSoftmax and ErrorPredition nodes with the “eval”
tag, the values of these nodes can also be monitored and logged during training.
As before, the ScaledLogLikelihood is also computed for use in a decoder.

7.1.7 Training a network with multiple inputs

There are instances where it’s desirable to input multiple features into a network,
such as MFCC and FBANK coefficients. In this case, multiple feature inputs (two,
in this example) need to be specified in the reader, and the network needs to be
constructed appropriately using NDL. The following is a snippet from reader con-
figuration block showing how two different feature types, defined as features1 and
features2 can be read, along with the phonetic labels. In this case, the log mel
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filterbank features which are 72-dimensional will use an 11-frame context win-
dow, while the MFCC features which are 39-dimensional will use a single frame
of input.

features1=[
dim=792
scpFile="$ScpDir$\TIMIT.train.scp.fbank.fullpath"

]
features2=[
dim=39
scpFile="$ScpDir$\TIMIT.train.scp.mfcc.fullpath"

]
labels=[
mlfFile="$MlfDir$\TIMIT.train.align_cistate.mlf.cntk"
labelMappingFile="$MlfDir$\TIMIT.statelist"
labelDim=183

]

The NDL for constructing a network with these inputs and outputs can be done
in a number of ways. One way is to contruct a macro that constructs a layer that
takes two inputs, as follows:

SBFF2(input1,rowCount,colCount1,input2,colCount2)
{
B=Parameter(rowCount,init="fixedValue",value=0)
W1=Parameter(rowCount, colCount1)
W2=Parameter(rowCount, colCount2)
T1=Times(W1,input1) T2=Times(W2,input2)
P1=Plus(T1,T2)
P2=Plus(P1,B)
S=Sigmoid(P2)

}

This macro can then be used to create the network. For example, inputs and the
first layer would be declared using the NDL code below.

FeatDim1 = 792
FeatDim2 = 39

features1=Input(FeatDim1,tag="feature")
features2=Input(FeatDim2,tag="feature")
labels=Input(LabelDim1,tag="label")

featInput1=MeanVarNorm(features1)
featInput2=MeanVarNorm(features2)
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L1 = SBFF2(featInput1, HiddenDim, FeatDim1, featInput2,
FeatDim2)

The rest of the hidden layers and the output layer with a cross entropy objective
function would be the same as previous examples. Notice that the names and di-
mensionality of the input adn output data have to the same in both the NDL model
description and the reader configuration.

7.1.8 Evaluating networks and cross validation

One a network has been trained, we would like to test its performance. To do
so, we use a configuration very similar to training, except the “train” action is
replaced with the action “eval”, and the data reader needs to be updated to process
the development or evaluation data rather than the training data. Of course, the
SGD optimization block is not necessary and can be omitted.

action="eval"

One version of cross validation is early stopping, where a fixed learning sched-
ule is used during training but all intermediate models are evaluated and the one
with the best performance on a development set is selected for evaluation. If you
perform network training for a large number of epochs, you can efficiently evaluate
the performance of a series of models using the “cv” action.

action="cv"

In addition, you can choose the models you wish to evaluate if you do not want the
output of every single epoch. This is done using the “crossValidationInterval” con-
figuration parameters, which takes 3 colon-separated terms which are interpreted
as a Matlab-style specification of an array. In the following example, the models
from epoch 0, 2, 4, etc. up to the final epoch will be evaluated

crossValidationInterval=0:2:25

7.1.9 Writing network outputs to files

There are many examples where it is necessary to write either the output or an in-
ternal representation of the network to a file. In speech recognition, some common
examples of this are writing the output of the network to a file for decoding or con-
struction of a tandem style acoustic model, or writing the internal representation
to create bottleneck features. CNTK support this by the use of the “write” action,
the specification of a desired output node, and the use of a data writer. To write



CHAPTER 7. EXAMPLE SETUPS 166

data from a particular node, the node is specified using the configuration param-
eter “outputNodeNames”. For example, for decoding, this would typically be the
ScaledLogLikelihood node. A data reader is used to specify the names of the files
that will be input to the network and a data writer is used to specify the names of
the files to store the output. All nodes specified in the reader and writer must have
SCP files that have a line-by-line correspondence to each other. Data is read from
the first feature file listed in the SCP file specified in the reader and processed by
the network. The values at the desired output node are then passed to the writer
and written to the first file in the SCP file that corresponds to that node in the writer
configuration. The rest of the files are processed in a similar manner, going line-
by-line down the SCP files in the reader and writer. The data is written as an HTK
format feature file with the “USER” parameter kind.

In the following example, data from the autoencoder described previously will
be written to files. In particular, the activations in the second hidden layer prior to
the sigmoid non-linearity will be captured. This node is specified as “L2.BFF.FF.P”.
node will be written to files. The output file names are specified using the SCP file
in the writer, which is line-by-line parallel with the SCP file used by the reader.

TIMIT_WriteBottleneck=[
action="write"
modelPath="$ExpDir$\TrainAutoEncoder\model\cntkSpeech.dnn"
outputNodeNames="L2.BFF.FF.P"
reader=[
readerType="HTKMLFReader"
features=[
dim=792
scpFile="$ScpDir$\TIMIT.core.scp.fbank.fullpath"

]

writer=[
writerType="HTKMLFWriter"
L2.BFF.FF.P = [
dim=64
scpFile="$ScpDir$\TIMIT.core.scp.bottleneck.fullpath"

]
]

]

For writing scaled log likelihoods, the configuration file would look very simi-
lar, except a different node would be specified, e.g. ScaledLogLikelihood, and the
writer should be changed appropriately.

If you are unsure of the exact node name you need to specify, you can use
the “dumpnode” action with printValues set to false. This will generate a text file
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listing of all valid nodes in the network.

TIMIT_DumpNodes=[
action=dumpnode
modelPath="$ExpDir$\TrainAutoEncoder\model\cntkSpeech.dnn"
printValues=false

]

7.2 RNN Language Model

Recurrent neural network (RNN) language models have been proven to obtain
state-of-the-art performance in language modeling. We use Penn Treebank data set
to demonstrate how to build a RNN language model with CNTK. In particular, we
will build a class based RNN language model. The setup file is CNTK\MachineLearning\cn\rnnlmConfig.txt,
which consists of two components: train and test.

7.2.1 Train

Training parameters are specified in this section, with the most important ones
listed as follows.

• action=”train”. It indicates the section is for training.

• minibatchSize=10. In RNN training, the minibatch size is the truncation size
of the truncated BPTT. That is, model parameters are updated after 10 words.

• deviceId=-1. -1 means CPU. One can change to GPU by specifying a non-
negative GPU id.

• epochSize=4430000. The max number of words used to train RNN model in
each epoch. This provides a way to use a proportion of entire training data
for model training.

• SimpleNetworkBuilder section

– rnnType=”CLASSLM”. The RNN network structure. It consists of an
input layer, a recurrent hidden layer and an output layer (including
classes and vocabularies).

– trainingCriterion=”ClassCrossEntropyWithSoftmax”. Training crite-
rion used in model training.

– nodeType=”Sigmoid”. Non-linearity function used in hidden layer.
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– layerSizes=10000:200:10000. Sizes of input, hidden and ouput layers.
Input layer size is equal to vocabulary size, hidden layer is normally in
the range of 50 to 500, output layer size is the vocabulary size.

– uniformInit=true. Whether to use uniformly randomizied values for
initial paramter weights.

– vocabSize=10000. The vocabulary size

– nbrClass=50 . number of word classes.

• SGD section

– learningRatesPerSample=0.1. Learning rate in stochastic gradient de-
scent.

– momentumPerMB=0. Momentum used in updating parameter weights.
The updating equation is gnew = (1 −m) ∗ g +m ∗ gold, where m is
momentum, g is the gradient computed in backward pass, gold is the
gradient value in previous mini-batch, and gnew is the new gradient for
the current min-batch.

– gradientClippingWithTruncation=true. Whether to control the upper
bound of the gradient values using simple truncation or norm based
approach (higher cost).

– clippingThresholdPerSample=15.0. Indicates that the absolute value of
the gradient should never be larger than 15.

– maxEpochs=40. Maximum number of training epochs.

– numMBsToShowResult=2000. The frequency of showing training/val-
idation loss results (in terms of how many mini-batches are processed).

– gradUpdateType=”none”. How the gradients are computed. None
stands for standard gradient update (no special treatment). One can
also choose adagrad or rmsprop.

– modelPath=”C:\CNTKExp\RNN\log\modelRnnCNTK”. The resulting
RNN model file location.

– loadBestModel=true. Choose to use the best of previous models to start
training in each epoch.

– reduceLearnRateIfImproveLessThan=0.001. The learning parameter
is reduced if the difference between previous criterion and current cri-
terion is smaller than previous criterion multiplied by reduceLearn-
RateIfImproveLessThan.
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– continueReduce=true. If true, the learning rate is always reduced per
epoch once it is reduced.

– learnRateDecreaseFactor=0.5. Learning rate decrese factor.

• reader section

– wordclass=”C:\CNTKExp\RNN\data\PennTreeBank\vocab.txt”. Word
class file which contains words, their ids and their class ids, in the
following format
word_id \t frequency \t word_string \t word_class
word_id is a unique non-negative interger, frequency is the frequency
of word (optional), word_string is the word string (low frequent words
may be mapped to <unk>), and word_class is the class id of word.
Word class can be derived using frequency based heuristics [33]or more
sophisticated way[34].

– file=”C:\CNTKExp\RNN\data\PennTreeBank\ptb.train.cntk.txt”. The
location of training data file which has the following format
</s> word1 word2 ... </s>

• cvReader section

– wordclass=”C:\CNTKExp\RNN\data\PennTreeBank\vocab.txt”. Word
class file which contains words, their ids and their class ids.

– file=”C:\CNTKExp\RNN\data\PennTreeBank\ptb.valid.cntk.txt”. Val-
idation data file location. It has the same format as training data.

7.2.2 Test

Test parameters are specified in this section, with the most important ones specified
as follows.

• action=”eval”. It indicates the section is for test.

• minibatchSize=100. Evaluation truncation size is 100.

• deviceId=-1. Use CPU device.

• reader section

– wordclass=”C:\CNTKExp\RNN\data\PennTreeBank\vocab.txt”. Word
class file which contains words, their ids and their class ids.

– file=”C:\CNTKExp\RNN\data\PennTreeBank\ptb.test.cntk.txt”. Test data
file location. It has the same format as training data.
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7.3 LSTM Language Model

We apply long-short-term memory (LSTM) recurrent neural network for language
modeling task. The example setup is at ExampleSetups\LM\LSTMLM\lstmlmconfig.txt.
In this setup, the following need to specified for training

7.3.1 Training

• action=”train” : this informs CNTK to train a model.

• deviceId=-1 : this specifies using CPU.

• SimpleNetworkBuilder:

– recurrentLayer=1 : this specifies that layer 1 is recurrent layer.

– rnnType=”CLASSLM” : this informs CNTK to call class-based LSTM
function in simplenetworkbuilder.

– trainingCriterion=”ClassCrossEntropyWithSoftmax” specifies that train-
ing set to use class-based cross entropy

– evalCriterion=”ClassCrossEntropyWithSoftmax” specifies validation set
also uses class-based cross entropy for evaluation.

– layerSizes=10000:200:10000 : this specifies input, hidden and output
layer sizes.

– vocabSize=10000. The vocabulary size

– nbrClass=50 . number of word classes.

• SGD

– useAdagrad=true : this specifies using AdaGrad for weight update.

– modelPath=”c:\temp\penntreebank\cntkdebug.dnn” : this is the trained
model file name.

• Reader: specifies training reader

– readerType=”LMSequenceReader” : specifies using language model
sequence reader.

– wordclass=”c:\exp\penntreebank\data\wordclass.txt” : specifies word
class info.

– file=”c:\exp\penntreebank\data\ptb.train.cntk.txt” : specifies training file
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• cvReader: specifies cross-validation reader

– readerType=”LMSequenceReader” : specifies using language model
sequence reader.

– wordclass=”c:\exp\penntreebank\data\wordclass.txt” : specifies word
class info.

– file=”c:\exp\penntreebank\data\ptb.valid.cntk.txt” : specifies validation
file

7.3.2 Test

In this setup, the following need to specified for testing

• action=”eval” : this informs CNTK to call simplenetwork evaluation.

• deviceId=-1 : this specifies using CPU.

• modelPath=”c:\temp\penntreebank\cntkdebug.dnn” : this is the trained model
file name.

• Reader: specifies test set reader

– readerType=”LMSequenceReader” : specifies using sequence reader.

– wordclass=”c:\exp\penntreebank\data\wordclass.txt” : specifies word
class info.

– file=”c:\exp\penntreebank\data\ptb.test.cntk.txt” : specifies testing file

7.4 Spoken Language Understanding

One of the important tasks in spoken language understanding is labeling input se-
quence with semantic tags. In this example, we show how CNTK can be used to
train a LSTM recurrent network for the labeling task. The setup file is under Ex-
ampleSetups\SLU\rnnlu.config. The data is ATIS, which consists of 944 unique
words, including <unk>, in the training/dev set. Output has 127 dimension, each
corresponding to a semantic tag in ATIS. Unseen words in test will be mapped to
<unk>. A file provides such mapping from one word to the other, which is useful
to map low-frequency input or unseen input to a common input. In this case, the
common input is <unk>.
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7.4.1 Training

In this setup, the following need to specified for training

• action=”train” : this informs CNTK to train a model.

• deviceId=-1 : this specifies using CPU.

• minibatchSize = 10 : this specifies the maximum number of words per mini-
batch.

• SimpleNetworkBuilder:

– recurrentLayer=2 : this specifies that layer 2 is recurrent layer.

– rnnType=LSTM: this informs CNTK to call LSTM function in sim-
plenetworkbuilder.

– lookupTableOrder=3: this specifies forming a context-dependent input
with a context window size of 3.

– trainingCriterion=”ClassCrossEntropyWithSoftmax” specifies that train-
ing set to use cross entropy

– evalCriterion=”ClassCrossEntropyWithSoftmax” specifies validation set
also uses cross entropy for evaluation.

– layerSizes=2832:50:300:127: this specifies input, hidden and output
layer sizes. Notice that input layer has dimension of 2832, which is 3
times 944. This number is obtained in consideration of context window
size and the number of unique words, which 944. If lookupTableOrder
is set to 1, the input layer size should be set to 944.

• SGD

– learningRatePerSample=0.1 : this specifies learning rate per sample.

– modelPath=”c:\temp\exp\ATIS\temp\cntkdebug.dnn” : this is the trained
model file name.

– gradUpdateType=AdaGrad : this specifies using AdaGrad for updating
weights.

• Reader: specifies training reader

– readerType=LUSequenceReader : specifies using LUsequence reader.

– nbruttsineachrecurrentiter=10 : this specifies using maximum of 10
sentences for each minibatch.
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– wordcontext=0:1:2 : this specifies the time indices for forming a con-
text window. In this example, this setup coresponds to using the current
input, the next input, and the input after the next input for a context win-
dow of size 3. User can also use other cases such as wordcontext=0:-
1:1 to form a context window of 3 but using the current input, the pre-
vious input, and the next input.

– wordmap=c:\exp\atis\data\inputmap.txt : specifies a file that lists a map-
ping from word to the other word. This mapping file should be con-
structed only from training/dev sets.

– file=c:\exp\ATIS\data\atis.train.apos.pred.pos.head.IOB.simple: speci-
fies training file

– labelIn : this specifies information of inputs

∗ beginingSequence=”BOS” : this specifies the symbol of sequence
begining.
∗ endSequence=”EOS” : this specifies the symbol of sequence end-

ing.
∗ token=”c:\exp\atis\data\input.txt” : this specifies a list of word as

input.

– labels : this specifies information of labels

∗ token=”c:\exp\atis\data\output.txt” : this specifies output semantic
labels.

• cvReader: specifies cross-validation reader. Most of setups should be same
as those in Reader section.

– readerType=”LUSequenceReader” : specifies using sequence reader.

– wordcontext=0:1:2 : this specifies the time indices for forming a con-
text window. This should be the same as specified in Reader section.

– file=”c:\exp\ATIS\data\atis.dev.apos.pred.pos.head.IOB.simple”: spec-
ifies validation file

7.4.2 Test

In this setup, the following need to specified for writing/decoding test set. It uses
LUSequenceWriter to decode test set word sequence to their semantic tags.

• action=”write”: this informs CNTK to call simplenetwork evaluation and
write outputs, which will be specified below.



CHAPTER 7. EXAMPLE SETUPS 174

• deviceId=-1 : this specifies using CPU.

• modelPath=”c:\temp\exp\ATIS\temp\cntkdebug.dnn”: this is the trained model
file name.

• outputNodeNames=”outputs:labels” : this specifies which nodes to output
results. These node names are pre-spefied in CNTK’s simple network builder.
The node “outputs” is the node that output activies before softmax. The node
“labels” is the node that has reference labels for comparison.

• reader: specifies test set reader

– readerType=”LUSequenceReader” : specifies using LUsequence reader.

– wordmap=”c:\exp\atis\data\inputmap.txt”: specifies word map file, which
should be the same as those used in training/validation readers.

– file=”c:\exp\atis\data\atis.test.apos.pred.pos.head.IOB.simple”: speci-
fies testing file

• writer : this specifies where to write

– writerType=”LUSequenceWriter” : this specifies using LUSequenceWriter.

– outputs : specifies where to write for the outputs node.

∗ file=”c:\temp\exp\atis\output\output.rec.txt” : the file name for writ-
ting decode results from LUSequenceWriter.
∗ token=”c:\exp\atis\data\output.txt” : this specifies the semantic la-

bels.
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