Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 0f95d5b
  • /
  • R
  • /
  • setup.grid.1D.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:652e1e142b19eaf12008902791452216995bbe6d
directory badge Iframe embedding
swh:1:dir:d59871c8b2734dd08765b16d928e656c07fe0b0e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
setup.grid.1D.R

##==============================================================================
## Creation of a one-dimensional finite difference grid
##==============================================================================

setup.grid.1D <- function(x.up=0,	x.down=NULL, L=NULL,
  N=NULL, dx.1 =NULL, p.dx.1 = rep(1,length(L)),
  max.dx.1 = L, dx.N =NULL, p.dx.N = rep(1,length(L)),
  max.dx.N = L) {

## Check on the input

  for (i in 1:length(L)) {
  if (is.null(x.down[i]) && is.null(L[i]))
    stop (paste("Error in setup.grid.1D! Grid zone",i,": either the length (L) or the end point (x.down) should be specified"))
  }

## If the interval lengths are given, create the end points of each zone 

  if (is.null(x.down[1])) {
    if (any(L<0)) stop (paste("Error in setup.grid.1D! L[",which(L<0),"] < 0",sep=""))
    x.down <- x.up + cumsum(L)
  }
  
## If the interval lengths are given, create the end points of each zone 

  if (is.null(L[1])) {
    L <- diff(c(x.up,x.down))
    if (any(L<0)) stop (paste("Error in setup.grid.1D! L[",which(L<0),"] < 0",sep=""))
  }

## Check wether all info is available in each zone 

  for (i in 1:length(L)) {
    if (is.null(N[i]) && is.null(dx.1[i]) && is.null(dx.N[i]))
    stop (paste("Error in setup.grid.1D! Both N[",i,"], dx.1[",i,"] and dx.N[",i,"] are NULL"))
  }

## Calculation of the grid cell sizes

  dx <- vector()

## Power law function that controls the increase in grid size. The 
## root of this function determines the power factor that corresponds to a 
## desired number of cells N 

  p1 <- 1.00001
  p2 <- 3
  
  f.root <- function(p,dx,N,L) dx*(p^(N)-1)/(p-1) - L

## Loop over all grid zones
  for (i in 1:length(L)) {

## Option 1: only N[i] is specified, all grid cells are equal
    if (!(is.null(N[i])) && (is.null(dx.1[i])) && (is.null(dx.N[i])))  { 
      if (N[i] < 1) stop (paste("Error in setup.grid.1D! N[",i,"] < 1",sep=""))
      A.dx  <- rep(L[i]/N[i],N[i])
    }
    
## Option 2: dx.1[i] specified, N[i] = NULL and dx.N[i] = NULL 

    if ((is.null(N[i])) && !(is.null(dx.1[i])) && (is.null(dx.N[i])))  { 
      if (dx.1[i]<=0)
        stop (paste("Error in setup.grid.1D! dx.1[",i,"] <= 0",sep=""))
      if (dx.1[i] > L[i])
        stop (paste("Error in setup.grid.1D! dx.1[",i,"] > L[",i,"]",sep=""))
  
     # use gradual increase of grid cell size at upstream interface 
      A.dx <- vector()
      pos <- vector()
      A.dx[1] <- dx.1[i]
      pos[1] <- dx.1[i]
      j <- 1
      while (pos[j] < L[i]) {
        j <- j + 1
        A.dx[j] <- min(max.dx.1[i],A.dx[j-1]*p.dx.1[i])
        pos[j] <- pos[j-1] + A.dx[j]
      }
     # rescaling to fit the interval length 
      A.dx <- A.dx*(L[i]/pos[length(pos)])
    }

## Option 3: dx.N[i] specified, N[i] = NULL and dx.1[i] = NULL 

    if ((is.null(N[i])) && (is.null(dx.1[i])) && !(is.null(dx.N[i])))  { 
      if (dx.N[i]<=0)
        stop (paste("Error in setup.grid.1D! dx.N[",i,"] <= 0",sep=""))
      if (dx.N[i] > L[i])
        stop (paste("Error in setup.grid.1D! dx.N[",i,"] > L[",i,"]",sep=""))
  
     # use gradual increase of grid cell size at downstream interface 
      A.dx <- vector()
      pos <- vector()
      A.dx[1] <- dx.N[i]
      pos[1] <- dx.N[i]
      j <- 1
      while (pos[j] < L[i]) {
        j <- j + 1
        A.dx[j] <- min(max.dx.N[i],A.dx[j-1]*p.dx.N[i])
        pos[j] <- pos[j-1] + A.dx[j]
      }
     # rescaling to fit the interval length 
      A.dx <- A.dx*(L[i]/pos[length(pos)])
     # reversing the A.dx vector
      A.dx <- A.dx[length(A.dx):1]
    }

## Option 4: N[i] and dx.1[i] are specified, dx.N[i] = NULL 

    if (!(is.null(N[i])) && !(is.null(dx.1[i])) && (is.null(dx.N[i])))  { 

      if (N[i] < 1) stop (paste("Error in setup.grid.1D! N[",i,"] < 1",sep=""))
      if (dx.1[i]<=0)
        stop (paste("Error in setup.grid.1D! dx.1[",i,"] <= 0",sep=""))
      if (dx.1[i] > L[i])
        stop (paste("Error in setup.grid.1D! dx.1[",i,"] > L[",i,"]",sep=""))
  
      # estimate power in power law 
      if (f.root(p=p1,dx.1[i],N[i],L[i])*f.root(p=p2,dx.1[i],N[i],L[i]) >= 0)
      {
      A.dx <- rep(L[i]/N[i],times=N[i])
      } else {
      p.estim <- uniroot(f=f.root,dx=dx.1[i],N=N[i],L=L[i],lower=p1,upper=p2)$root
      # use gradual increase of grid cell size at upper interface 
      A.dx <- vector()
      pos <- vector()
      A.dx[1] <- dx.1[i]
      pos[1] <- dx.1[i]
      j <- 1
      while (j < N[i]) {
        j <- j + 1
        A.dx[j] <- min(max.dx.1[i],A.dx[j-1]*p.estim)
        pos[j] <- pos[j-1] + A.dx[j]
      }
     # rescaling to fit the interval length 
      A.dx <- A.dx*(L[i]/pos[length(pos)])
      }
   }

## Option 5: N[i] and dx.N[i] are specified, dx.1[i] = NULL 

    if (!(is.null(N[i])) && (is.null(dx.1[i])) && !(is.null(dx.N[i])))  { 

      if (N[i] < 1) stop (paste("Error in setup.grid.1D! N[",i,"] < 1",sep=""))
      if (dx.N[i]<=0)
        stop (paste("Error in setup.grid.1D! dx.N[",i,"] <= 0",sep=""))
      if (dx.N[i] > L[i])
        stop (paste("Error in setup.grid.1D! dx.N[",i,"] > L[",i,"]",sep=""))
  
      if (f.root(p=p1,dx.N[i],N[i],L[i])*f.root(p=p2,dx.N[i],N[i],L[i]) >= 0)
      {
      A.dx <- rep(L[i]/N[i],times=N[i])
      } else {
     # estimate power in power law 
      p.estim <- uniroot(f=f.root,dx=dx.N[i],N=N[i],L=L[i],lower=p1,upper=p2)$root
      # use gradual increase of grid cell size at upper interface 
      A.dx <- vector()
      pos <- vector()
      A.dx[1] <- dx.N[i]
      pos[1] <- dx.N[i]
      j <- 1
      while (j < N[i]) {
        j <- j + 1
        A.dx[j] <- min(max.dx.N[i],A.dx[j-1]*p.estim)
        pos[j] <- pos[j-1] + A.dx[j]
      }
     # rescaling to fit the interval length 
      A.dx <- A.dx*(L[i]/pos[length(pos)])
      }
     # reversing the A.dx vector
      A.dx <- A.dx[length(A.dx):1]
    }

## Option 6: dx.1[i] and dx.N[i] are specified, N[i] can be NULL 

    if (!(is.null(dx.1[i])) && !(is.null(dx.N[i])))  { 

      if (dx.1[i]<=0)
        stop (paste("Error in setup.grid.1D! dx.1[",i,"] <= 0",sep=""))
      if (dx.1[i] > L[i]/2)
        stop (paste("Error in setup.grid.1D! dx.1[",i,"] > L[",i,"]",sep=""))
      if (dx.N[i]<=0)
        stop (paste("Error in setup.grid.1D! dx.N[",i,"] <= 0",sep=""))
      if (dx.N[i] > L[i]/2)
        stop (paste("Error in setup.grid.1D! dx.N[",i,"] > L[",i,"]",sep=""))

      L.A <- 0.5*L[i]
      L.B <- 0.5*L[i]

      # estimate power in power law 
      if (!is.null(N[i])) {
      
      N.A <- as.integer(N[i]/2) 
      N.B <- N[i] - N.A
      L.A <- (N.A/N[i])*L[i]
      L.B <- L[i] - L.A
      
      if (f.root(p=p1,dx.1[i],N.A,L.A)*f.root(p=p2,dx.1[i],N.A,L.A) >= 0)
      {
        p.dx.1[i] <- 1
        } else {
        p.dx.1[i] <- uniroot(f=f.root,dx=dx.1[i],N=N.A,L=L.A,lower=p1,upper=p2)$root
      }
      if (f.root(p=p1,dx.N[i],N.B,L.B)*f.root(p=p2,dx.N[i],N.B,L.B) >= 0)
      {
        p.dx.N[i] <- 1
        } else {
        p.dx.N[i] <- uniroot(f=f.root,dx=dx.N[i],N=N.B,L=L.B,lower=p1,upper=p2)$root
      }
      }
      # use gradual increase of grid cell size at upsteam interface
      A.dx  <- vector()
      pos <- vector()
      A.dx[1] <- dx.1[i]
      pos[1] <- dx.1[i]
      j <- 1
      while ((is.null(N[i])&&(pos[j] < L.A))||(!is.null(N[i])&&(j < N.A))) {
         j <- j + 1
         A.dx[j] <- min(max.dx.1[i],A.dx[j-1]*p.dx.1[i])
         pos[j] <- pos[j-1] + A.dx[j]
      }
      A.dx <- A.dx*(L.A/pos[length(pos)])

      # use gradual increase of grid cell size at downsteam interface
      B.dx  <- vector()
      pos <- vector()
      B.dx[1] <- dx.N[i]
      pos[1] <- dx.N[i]
      j <- 1
      while ((is.null(N[i])&&(pos[j] < L.B))||(!is.null(N[i])&&(j < N.B))) {
        j <- j + 1
        B.dx[j] <- min(max.dx.N[i],B.dx[j-1]*p.dx.N[i])
        pos[j] <- pos[j-1] + B.dx[j]
      }
      B.dx <- B.dx*(L.B/pos[length(pos)])
      # assemble the distance vector 
      A.dx <- c(A.dx,B.dx[length(B.dx):1])
    }

  ## calculation of present zone has finished, add distances to existing array 
  
    dx <- c(dx,A.dx)
  }

  ## positions and distances

  x.int  <- x.up + diffinv(dx)
  x.mid  <- colMeans(rbind(x.int[-1],x.int[-(length(dx)+1)]))
  dx.aux <- c(dx[1]/2,diff(x.mid),dx[length(dx)]/2)

  ## Packaging of results

  Res <- list(x.up = x.up,
	  			    x.down = x.down[length(x.down)],
		  		    x.mid = x.mid,   # position of centre of the grid cells, vector of length N
              x.int  = x.int,  # position of the grid cell interfaces , vector of length N+1
              dx = dx  ,       # thickness of the grid cells , vector length N
              dx.aux = dx.aux, # auxiliary vector with distances between centre of adjacent cells, first and last: half of cell size, vector of length N+1
              N = length(dx))  # total number of grid cells
  class(Res) <- "grid.1D"
  return(Res)
}

##==============================================================================
## S3 method: Plotting of a one-dimensional finite difference grid
##==============================================================================

plot.grid.1D <- function(x,...) {
  mf <- par(mfrow=c(2,1))
  on.exit(par(mf))
    
  plot(x$x.int,main="position of cells",ylab="x",xlab="index",...)
  points(0.5+(1:x$N),x$x.mid,pch=16)
  legend("topleft",c("x.int","x.mid"),pch=c(1,16))
  plot(x$dx.aux,main="box thickness",ylab="dx",xlab="index",...)
  points(0.5+(1:x$N),x$dx,pch=16)
  legend("topleft",c("dx.aux","dx.mid"),pch=c(1,16))
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top