Notes on Bayesian Prevalence

Jim W. Kay ${ }^{1}$ and Robin A. A. Ince ${ }^{2}$
${ }^{1}$ Department of Statistics, University of Glasgow, UK
${ }^{2}$ Institute of Neuroscience and Psychology, University of Glasgow, UK

2 July, 2019

Introduction

We consider a population of units (participants or spike-sorted single neuron spike trains) which are of two types. Within the population, a proportion γ possess some definable effect, while the proportion of units in the population who do not possess this effect is $1-\gamma$. The prevalence of the defined effect within the population is $\gamma,(0<\gamma<1)$. A random sample of n units is selected from the population and each unit undergoes a test procedure, in which the presence of the defined effect is investigated using a significance test. It is assumed that for each unit the significance level of the test is a (1 -specificity) and the power of the test (sensitivity) is b. Thus, the probability that a randomly selected unit from the population who does not possess the defined effect will produce a significant result is a, while the probability that a randomly selected unit from the population who does possess the defined effect will produce a significant result is b.

A binary variable - shows a significant effect or does not show a significant effect is recorded for each unit in the sample, and we suppose that the total number of units who show a significant effect, out of the n tested, is k. Let θ be the probability that a randomly selected unit from the population will show a significant effect. Then

$$
\begin{equation*}
\theta=(1-\gamma) a+\gamma b=a+(b-a) \gamma . \tag{1}
\end{equation*}
$$

We will develop the modelling in terms of the parameter θ, and later use (1) to find appropriate results in terms of the prevalence, γ.

Modelling

Assuming that the test results on the performance of the units are independent and that the parameter θ is the same for all units in the population. Let the random variable X denote the number of units out of the n tested which show a significant effect at significance level a. Then X follows a binomial distribution and

$$
\begin{equation*}
\operatorname{Pr}(X=k \mid \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}, \quad k=0,1, \ldots, n, \quad(0<\theta<1) . \tag{2}
\end{equation*}
$$

We now define a prior distribution to characterise the prior uncertainty about θ. First, we note that under the uncontroversial assumption that $b>a$, we find from (1) that $\theta>a$. Also, since
$\gamma<1$, we find that $\theta<b$. The claim regarding the assumption that $b>a$ is perfectly reasonable since it would make no sense to employ a test procedure for which the power is less than the significance level. It follows that $a<\theta<b$.

The conjugate prior for θ is the beta distribution so, bearing in mind the constraint on θ, we assume that the prior distribution for θ is the following truncated beta distribution with probability density function

$$
\begin{align*}
p(\theta \mid a, b, r, s) & =\frac{1}{B(r, s)} \frac{\theta^{r-1}(1-\theta)^{s-1}}{[F(b ; r, s)-F(a ; r, s)]}, \quad a<\theta<b, \quad(r>0, s>0) \tag{3}\\
& \equiv \frac{\operatorname{Beta}(r, s)}{[F(b ; r, s)-F(a ; r, s)]}
\end{align*}
$$

where $F(x ; r, s)$ is the cumulative distribution function (cdf) of θ given by the following beta cdf,

$$
\begin{equation*}
F(x ; r, s)=\frac{1}{B(r, s)} \int_{0}^{x} \theta^{r-1}(1-\theta)^{s-1} d t \tag{4}
\end{equation*}
$$

Beta (r, s) is the pdf of the beta distribution and $B(r, s)$ is the beta function, both having parameters r, s. The selection of values for the parameters r, s depends on prior information about θ. In the absence of any prior information about θ we will use the choice $r=1, s=1$ in practical applications, while keeping the notation general in the formulation. This corresponds to the a priori assumption that the prior uncertainty regarding θ can be represented by a uniform distribution on the interval (a, b).

We define $m_{1} \equiv k+r, m_{2} \equiv n-k+s$. Combination of the likelihood in (2) with the prior in (3) by means of Bayes' theorem gives the posterior probability density function for θ as

$$
p(\theta \mid k, a, b, r, s) \propto \theta^{m_{1}-1}(1-\theta)^{m_{2}-1}, \quad a<\theta<b
$$

and so the posterior p.d.f. is the truncated beta distribution

$$
\begin{equation*}
p(\theta \mid k, a, b, r, s)=\frac{\operatorname{Beta}\left(m_{1}, m_{2}\right)}{\left[F\left(b ; m_{1}, m_{2}\right)-F\left(a ; m_{1}, m_{2}\right)\right]}, \quad a<\theta<b . \tag{5}
\end{equation*}
$$

In the sequel, the cdf and its inverse - the quantile function - for the truncated beta distribution will be required so we now provide expression for these functions: $C(x)$ for the $c d f$ and $Q(p)$ for the quantile function.

$$
\begin{equation*}
C(x)=\operatorname{Pr}(\theta<x)=\int_{a}^{x} p(\theta \mid k, a, b, r, s) d \theta=\frac{F\left(x ; m_{1}, m_{2}\right)-F\left(a ; m_{1}, m_{2}\right)}{F\left(b ; m_{1} m_{2}\right)-F\left(a ; m_{1}, m_{2}\right)} . \tag{6}
\end{equation*}
$$

Suppose that we wish to find the p th quantile, x, of the truncated beta distribution in (5). That is: we wish to solve the equation

$$
\begin{equation*}
C(x) \equiv \int_{a}^{x} p(\theta \mid k, a, b, r, s) d \theta=p . \tag{7}
\end{equation*}
$$

Then using (6), we may write this equation as

$$
\begin{equation*}
F\left(x ; m_{1}, m_{2}\right)=(1-p) F\left(a ; m_{1}, m_{2}\right)+p F\left(b ; m_{1}, m_{2}\right) \tag{8}
\end{equation*}
$$

and so

$$
x=F^{-1}\left[(1-p) F\left(a ; m_{1}, m_{2}\right)+p F\left(b ; m_{1}, m_{2}\right)\right] .
$$

Thus, the quantile function for the p th quantile of the truncated beta distribution is

$$
\begin{equation*}
Q(p)=F^{-1}\left[(1-p) F\left(a ; m_{1}, m_{2}\right)+p F\left(b ; m_{1} m_{2}\right)\right], \tag{9}
\end{equation*}
$$

where as before F is the cdf of the beta distribution given in (4).

Applications

We now derive some applications of the truncated beta distribution from (5) in relation to the prevalence, γ.

Posterior distribution of γ

Using the standard result for transforming random variables, we find that the posterior p.d.f. for γ is

$$
\begin{equation*}
p(\gamma \mid k, a, b, r, s)=c[a+(b-a) \gamma]^{m_{1}-1}[1-a-(b-a) \gamma]^{m_{2}-1}, \quad(0<\gamma<1), \tag{10}
\end{equation*}
$$

where the constant c has the form

$$
\begin{equation*}
c=\frac{b-a}{B\left(m_{1}, m_{2}\right)\left[F\left(b ; m_{1}, m_{2}\right)-F\left(a ; m_{1}, m_{2}\right)\right]} . \tag{11}
\end{equation*}
$$

Figure 1: Posterior pdfs of population prevalence for four different choices of the values of (k, n), where k is the number of units, out of n tested, which show a significant result.

Figure 1 shows some posterior pdfs for γ.

Lower bound for γ

We can determine a lower bound, γ_{c}, for the prevalence by exploiting the relationship between θ and γ from (1) in the form

$$
\begin{equation*}
\gamma=\frac{\theta-a}{b-a} \tag{12}
\end{equation*}
$$

and we note that

$$
\begin{equation*}
\gamma \geq \gamma_{c} \Longleftrightarrow \theta \geq \theta_{c} \equiv a+(b-a) \gamma_{c} . \tag{13}
\end{equation*}
$$

Then from (1) and (7),

$$
\operatorname{Pr}\left(\gamma \geq \gamma_{c}\right)=\operatorname{Pr}\left(\theta \geq \theta_{c}\right)=1-\operatorname{Pr}\left(\theta<\theta_{c}\right) \equiv 1-C\left(\theta_{c}\right) .
$$

Using (5) we first find a posterior interval for θ of the form $\left(\theta_{c}, 1\right)$ which has posterior probability p by solving

$$
\int_{\theta_{c}}^{b} p(\theta \mid k, a, b, r, s) d \theta=p,
$$

which can be written as

$$
C\left(\theta_{c}\right)=1-p,
$$

so that from (9)

$$
\theta_{c}=Q(1-p) .
$$

Then from (13) we find the corresponding lower bound for γ as

$$
\begin{equation*}
\gamma_{c}=\frac{\theta_{c}-a}{b-a} \tag{14}
\end{equation*}
$$

γ

Figure 2: An illustration of the 0.95 lower bound for γ, denoted by LB95, as well as the MAP estimate of γ, when $k=10$ units, out of a total of n units, show a significant result.

MAP estimate of γ

The MAP estimate is the posterior mode for γ. It is given by

$$
\begin{cases}0 & \hat{\theta} \leq a \\ \hat{\theta}-a \\ b-a & a<\hat{\theta}<b, \quad \text { where } \quad \hat{\theta}=\frac{m_{1}-1}{m_{1}+m_{2}-2} \\ 1 & \hat{\theta} \geq b\end{cases}
$$

When $r=1, s=1, \hat{\theta}=k / n$.
An illustration of a 0.95 lower bound as well as a MAP estimate are shown in Figure 2.

γ

Figure 3: The HPDI when $k=10$ and $n=20$.

Highest posterior density interval for γ

Depending on the shape of the posterior pdf for γ, the HPDI can take several forms. It could be (i) a two-sided interval, (ii) a one-sided interval or (iii) a set of disjoint intervals. Case (i) happen when the posterior pdf is unimodal and the mode occurs when γ is neither 0 nor 1. Case (ii) occurs when posterior mode occurs when $\gamma=0$ or when $\gamma=1$. Case (iii) is not relevant here but it occurs when the posterior pdf is multimodal. We focus on Case (i). Then the HPDI with posterior probability p is the shortest interval of values of γ for which the posterior probability that γ lies between the endpoints of this interval is equal to p. We assume that $r=1, s=1$.

We first find the HPDI for θ which has posterior probability p, and then use relation (12) to derive the corresponding interval for γ. Mathematically, it is required to find endpoints e_{1}, e_{2} for θ such that

$$
\begin{aligned}
C\left(e_{2}\right)-C\left(e_{1}\right) & =p, \\
p\left(e_{2}\right)-p\left(e_{1}\right) & =0,
\end{aligned}
$$

where C is the $c d f$ of the truncated beta distribution defined in (7) and $p(e)$ is the posterior pdf for
θ in (5) evaluated at $\theta=e$, with $r=1, s=1$.
The HPDI for γ is then computed using (12). One-sided intervals occur when $k=0$ or $k=n$ or if the HPDI for θ has a left-hand endpoint less than or equal to a or a right-hand endpoint that is greater than or equal to b. An illustration is shown in Figure 3.

Sampling distribution

For a given unknown population prevalence γ, there will be variation in the number k of significant results obtained from repeated sets of tests in which n units are tested. Various statistics, such as (i) the length of the HDPI for γ (ii) the MAP estimate of γ and (iii) a lower bound for γ, are all subject to this sampling variation. It is useful then to consider the sampling distribution of each of these statistics and then compute its mean and standard deviation.

For a given number n of units, the value of k can be anything from 0 to n, with probability distribution given in (2). Let S be a statistic of interest which has value s_{k} when k out of n tests are significant $(k=0,1, \ldots, n)$. Then the mean value of S is

$$
\begin{equation*}
\mu_{n}=\sum_{k=0}^{n} \operatorname{Pr}(X=k \mid \theta) s_{k} \tag{15}
\end{equation*}
$$

and the standard deviation of S is

$$
\begin{equation*}
\sigma_{n}=\sqrt{\sum_{k=0}^{n} \operatorname{Pr}(X=k \mid \theta)\left(s_{k}-\mu_{n}\right)^{2}} \tag{16}
\end{equation*}
$$

Formulae (15),(16) are then applied by taking S in turn to be (i) the length of the HPDI for γ, (ii) the MAP estimate of γ and (iii) a lower bound for γ, or any other relevant statistic.

