Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/nFactors
24 October 2022, 04:44:14 UTC
  • Code
  • Branches (47)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0
    • refs/tags/2.1
    • refs/tags/2.2
    • refs/tags/2.3
    • refs/tags/2.3.1
    • refs/tags/2.3.2
    • refs/tags/2.3.3
    • refs/tags/2.3.3.1
    • refs/tags/2.4.1
    • refs/tags/2.4.1.1
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.4.0
    • refs/tags/R-2.4.1
    • refs/tags/R-2.5.0
    • refs/tags/R-2.5.1
    • refs/tags/R-2.6.0
    • refs/tags/R-2.6.1
    • refs/tags/R-2.6.2
    • refs/tags/R-2.7.0
    • refs/tags/R-2.7.1
    • refs/tags/R-2.7.2
    • refs/tags/R-2.8.0
    • refs/tags/R-2.8.1
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 3ee9c61
  • /
  • man
  • /
  • nBentler.rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:6684c3648c4507f2fcca546ea8107fa83d07e0e1
origin badgedirectory badge Iframe embedding
swh:1:dir:de85e01fd45a8bade675738b572f5098a216e6ce
origin badgerevision badge
swh:1:rev:d698320a894fbd444a99aa3d4dbce1f129cb82ac
origin badgesnapshot badge
swh:1:snp:788a101542b9bf7049cc9068e737c43bfa0ac40a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: d698320a894fbd444a99aa3d4dbce1f129cb82ac authored by Gilles Raiche on 28 March 2020, 04:50:06 UTC
version 2.4.1
Tip revision: d698320
nBentler.rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/nBentler.r
\name{nBentler}
\alias{nBentler}
\title{Bentler and Yuan's Procedure to Determine the Number of Components/Factors}
\usage{
nBentler(x, N, log = TRUE, alpha = 0.05, cor = TRUE,
  details = TRUE, minPar = c(min(lambda) - abs(min(lambda)) + 0.001,
  0.001), maxPar = c(max(lambda), lm(lambda ~
  I(length(lambda):1))$coef[2]), ...)
}
\arguments{
\item{x}{numeric: a \code{vector} of eigenvalues, a \code{matrix} of
correlations or of covariances or a \code{data.frame} of data}

\item{N}{numeric: number of subjects.}

\item{log}{logical: if \code{TRUE} does the maximization on the log values.}

\item{alpha}{numeric: statistical significance level.}

\item{cor}{logical: if \code{TRUE} computes eigenvalues from a correlation
matrix, else from a covariance matrix}

\item{details}{logical: if \code{TRUE} also returns detains about the
computation for each eigenvalue.}

\item{minPar}{numeric: minimums for the coefficient of the linear trend to
maximize.}

\item{maxPar}{numeric: maximums for the coefficient of the linear trend to
maximize.}

\item{...}{variable: additionnal parameters to give to the \code{cor} or
\code{cov} functions}
}
\value{
\item{nFactors}{ numeric: vector of the number of factors retained
by the Bentler and Yuan's procedure. } \item{details}{ numeric: matrix of
the details of the computation.}
}
\description{
This function computes the Bentler and Yuan's indices for determining the
number of components/factors to retain.
}
\details{
The implemented Bentler and Yuan's procedure must be used with care because
the minimized function is not always stable, as Bentler and Yan (1996, 1998)
already noted. In many cases, constraints must applied to obtain a solution,
as the actual implementation did, but the user can modify these constraints.

The hypothesis tested (Bentler and Yuan, 1996, equation 10) is: \cr \cr

(1) \eqn{\qquad \qquad H_k: \lambda_{k+i} = \alpha + \beta x_i, (i = 1,
\ldots, q)} \cr

The solution of the following simultaneous equations is needed to find
\eqn{(\alpha, \beta) \in} \cr

(2) \eqn{\qquad \qquad f(x) = \sum_{i=1}^q \frac{ [ \lambda_{k+j} - N \alpha
+ \beta x_j ] x_j}{(\alpha + \beta x_j)^2} = 0} \cr \cr and \eqn{\qquad
\qquad g(x) = \sum_{i=1}^q \frac{ \lambda_{k+j} - N \alpha + \beta x_j
x_j}{(\alpha + \beta x_j)^2} = 0} \cr

The solution to this system of equations was implemented by minimizing the
following equation: \cr

(3) \eqn{\qquad \qquad (\alpha, \beta) \in \inf{[h(x)]} = \inf{\log{[f(x)^2
+ g(x)^2}}]} \cr

The likelihood ratio test \eqn{LRT} proposed by Bentler and Yuan (1996,
equation 7) follows a \eqn{\chi^2} probability distribution with \eqn{q-2}
degrees of freedom and is equal to: \cr

(4) \eqn{\qquad \qquad LRT = N(k - p)\left\{ {\ln \left( {{n \over N}}
\right) + 1} \right\} - N\sum\limits_{j = k + 1}^p {\ln \left\{ {{{\lambda
_j } \over {\alpha + \beta x_j }}} \right\}} + n\sum\limits_{j = k + 1}^p
{\left\{ {{{\lambda _j } \over {\alpha + \beta x_j }}} \right\}} } \cr

With \eqn{p} beeing the number of eigenvalues, \eqn{k} the number of
eigenvalues to test, \eqn{q} the \eqn{p-k} remaining eigenvalues, \eqn{N}
the sample size, and \eqn{n = N-1}.  Note that there is an error in the
Bentler and Yuan equation, the variables \eqn{N} and \eqn{n} beeing inverted
in the preceeding equation 4.

A better strategy proposed by Bentler an Yuan (1998) is to used a minimized
\eqn{\chi^2} solution. This strategy will be implemented in a future version
of the \pkg{nFactors} package.
}
\examples{

## ................................................
## SIMPLE EXAMPLE OF THE BENTLER AND YUAN PROCEDURE

# Bentler (1996, p. 309) Table 2 - Example 2 .............
n=649
bentler2<-c(5.785, 3.088, 1.505, 0.582, 0.424, 0.386, 0.360, 0.337, 0.303,
            0.281, 0.246, 0.238, 0.200, 0.160, 0.130)

results  <- nBentler(x=bentler2, N=n)
results

plotuScree(x=bentler2, model="components",
    main=paste(results$nFactors,
    " factors retained by the Bentler and Yuan's procedure (1996, p. 309)",
    sep=""))
# ........................................................

# Bentler (1998, p. 140) Table 3 - Example 1 .............
n        <- 145
example1 <- c(8.135, 2.096, 1.693, 1.502, 1.025, 0.943, 0.901, 0.816, 0.790,
              0.707, 0.639, 0.543,
              0.533, 0.509, 0.478, 0.390, 0.382, 0.340, 0.334, 0.316, 0.297,
              0.268, 0.190, 0.173)

results  <- nBentler(x=example1, N=n)
results

plotuScree(x=example1, model="components",
   main=paste(results$nFactors,
   " factors retained by the Bentler and Yuan's procedure (1998, p. 140)",
   sep=""))
# ........................................................

}
\references{
Bentler, P. M. and Yuan, K.-H. (1996). Test of linear trend in
eigenvalues of a covariance matrix with application to data analysis.
\emph{British Journal of Mathematical and Statistical Psychology, 49},
299-312.

Bentler, P. M. and Yuan, K.-H. (1998). Test of linear trend in the smallest
eigenvalues of the correlation matrix. \emph{Psychometrika, 63}(2), 131-144.
}
\seealso{
\code{\link{nBartlett}}, \code{\link{bentlerParameters}}
}
\author{
Gilles Raiche \cr Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr
\email{raiche.gilles@uqam.ca}
\cr \cr David Magis \cr Departement de mathematiques \cr Universite de Liege
\cr \email{David.Magis@ulg.ac.be}
}
\keyword{multivariate}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API