Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/cplm
10 October 2024, 21:21:40 UTC
  • Code
  • Branches (35)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/0.1-1
    • refs/tags/0.1-2
    • refs/tags/0.2-1
    • refs/tags/0.3-1
    • refs/tags/0.4-1
    • refs/tags/0.5-1
    • refs/tags/0.6-1
    • refs/tags/0.6-2
    • refs/tags/0.6-4
    • refs/tags/0.7-1
    • refs/tags/0.7-10
    • refs/tags/0.7-11
    • refs/tags/0.7-12
    • refs/tags/0.7-12.1
    • refs/tags/0.7-2
    • refs/tags/0.7-3
    • refs/tags/0.7-4
    • refs/tags/0.7-5
    • refs/tags/0.7-6
    • refs/tags/0.7-7
    • refs/tags/0.7-8
    • refs/tags/0.7-9
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 739aa1e
  • /
  • R
  • /
  • spline.R
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:670f2a9a4e201cffadd401b4bbfeafd529f23b21
origin badgedirectory badge Iframe embedding
swh:1:dir:7c7290734942e7c99d9f2e861350132d4be0670a
origin badgerevision badge
swh:1:rev:dfb8ed80bd565abfb5882d2b201bd86c86aa3e6d
origin badgesnapshot badge
swh:1:snp:cb0846c741ae3675a9b721e48106d976897b2530
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: dfb8ed80bd565abfb5882d2b201bd86c86aa3e6d authored by Wayne Zhang on 17 January 2014, 00:00:00 UTC
version 0.7-1
Tip revision: dfb8ed8
spline.R
###########################################################
# Functions used in fitting additive models in cpglmm     #
###########################################################


#######################
# get model frame and factor list 
# for cpglmm with smoothing terms
#######################
frFL <- function (formula, data, family, control = list(),  
    verbose, weights, offset, contrasts, basisGenerators, bySetToZero = T) 
{
    call <- match.call()
    formula <- eval(call$formula)
    tf <- terms.formula(formula, specials = eval(call$basisGenerators, 
        parent.frame(2)))
    f.ind <- unlist(attr(tf, "specials"))
    n.f <- length(f.ind)
    rhs <- safeDeparse(formula[[3]])
    fctterm <- fct <- vector(mode = "list", length = n.f)
    for (i in 1:n.f) 
      fctterm[[i]] <- attr(tf, "variables")[[f.ind[i] + 1]]
    fct <- lapply(fctterm, eval, envir = data, enclos = parent.frame(2))
    for (i in seq_along(fct)) 
      fct[[i]] <- expandBasis(fct[[i]], eval(attr(fct[[i]], "call")$by, data), 
                  eval(attr(fct[[i]], "call")$varying, data), bySetToZero)
    names(fct) <- names(fctterm) <- paste("f.", lapply(fct, 
            function(x) {
                paste(as.character(attr(x, "call")$x), ifelse(!is.null(eval(attr(x, 
                  "call")$varying, data)), paste("X", deparse(attr(x, 
                  "call")$varying), sep = ""), ""), ifelse(eval(attr(x, 
                  "call")$allPen), paste(".", deparse(attr(x, 
                  "call")$by), sep = ""), ""), sep = "")
            }), sep = "")
    rhs <- subFcts(rhs, fctterm, fct, data)
    data <- expandMf(data, fct)
    call[[1]] <- as.name("lmer")
    call$doFit <- FALSE
    call$data <- as.name("data")
    call$formula <- as.formula(paste(formula[[2]], "~", rhs))
    call["basisGenerators"] <- NULL
    m <- eval(call, data)
    #    m$fr$mf <- data
    m <- subAZ(m, fct)
    fctterm <- lapply(fct, function(x) attr(x, "call"))
    return(list(m = m, fct = fct, fctterm = fctterm))
}


### The main event
lmer <-
  function(formula, data, family = NULL, REML = TRUE,
           control = list(), start = NULL, verbose = FALSE, doFit = TRUE,
           subset, weights, na.action, offset, contrasts = NULL,
           model = TRUE, x = TRUE, ...)
    ### Linear Mixed-Effects in R
  {
    mc <- match.call()
    if (!is.null(family)) {             # call glmer
      mc[[1]] <- as.name("glmer")
      return(eval.parent(mc))
    }
    stopifnot(length(formula <- as.formula(formula)) == 3)
    
    fr <- lmerFrames(mc, formula, contrasts) # model frame, X, etc.
    FL <- lmerFactorList(formula, fr, rmInt=FALSE, drop=FALSE) # flist, Zt, dims
    largs <- list(...)
    if (!is.null(method <- largs$method)) {
      warning(paste("Argument", sQuote("method"),
                    "is deprecated.  Use", sQuote("REML"),
                    "instead"))
      REML <- match.arg(method, c("REML", "ML")) == "REML"
      largs <- largs[names(largs) != "method"]
    }
    ### FIXME: issue a warning if the control argument has an msVerbose component    
    FL$dims["LMM"] <- 1L
    FL$dims["mxit"] <- 500L
    FL$dims["mxfn"] <- 1000L
    ans <- list(fr = fr, FL = FL, start = start)
    ans
  }

############################
# function for 2d splines (from Ngo and Wand)
############################
# compute thin plate spline covariance function  
tps.cov <- function(r) {
  r <- as.matrix(r)
  num.row <- nrow(r)
  num.col <- ncol(r)
  r <- as.vector(r)
  nzi <- (1:length(r))[r!=0]
  ans <- rep(0,length(r))
  ans[nzi] <- r[nzi]*r[nzi]*log(abs(r[nzi]))
  if (num.col>1) 
    ans <- matrix(ans,num.row,num.col)
  return(ans)
}

sp2d <- function(x1, x2, k = max(20,min(length(x1)/4,150)), 
                 by = NULL, allPen = FALSE, varying = NULL, 
                 diag = FALSE, knots1 = quantile(x1, probs = 1:k/(k+1)),
                 knots2 = quantile(x1, probs = 1:k/(k+1))) {
  call <- as.list(expand.call(match.call()))
  knots1 <- eval(knots1)
  knots2 <- eval(knots2)
  k <- eval(k)
  # design matrix for fixed effects
  X <- cbind(x1,x2)
  knots <- cbind(knots1,knots2)
  dist.mat <- matrix(0,k,k)
  dist.mat[lower.tri(dist.mat)] <- dist(knots)
  dist.mat <- dist.mat + t(dist.mat)
  Omega <- tps.cov(dist.mat)
  diffs.1 <- outer(x1,knots1,"-")
  diffs.2 <- outer(x2,knots2,"-")
  dists <- sqrt(diffs.1*diffs.1+diffs.2*diffs.2)
  svd.Omega <- svd(Omega)
  sqrt.Omega <- t(svd.Omega$v %*% (t(svd.Omega$u) * sqrt(svd.Omega$d)))
  # design matrix for random effects
  Z <- t(solve(sqrt.Omega,t(tps.cov(dists))))
  res <- list(X=X, Z=Z, knots=knots)
  attr(res, "call") <- as.call(call)  
  return(res)
}


###########################################################
# These are functions copied from the "amer" package      #
###########################################################

getF <- function (object, which, n=100, newdata=NULL, interval = c("NONE", "MCMC", "RW"), addConst = TRUE, varying=1, 
                  level = 0.9, sims = 1000)
{
  
  stopifnot(inherits(object, "cpglmm"), is.null(newdata)||is.data.frame(newdata), n>0, sims>0, level < 1, level > 0)
  
  
  terms <- object@smooths
  interval <- toupper(interval)
  interval <- match.arg(interval)
  
  n <- as.integer(n)
  sims <- as.integer(sims)
  if(missing(which)) which <- seq_along(terms)
  if(is.character(which)) {
    which <- match(which, names(terms))
    if(any(nas <- is.na(which))) 
      warning("entry ", paste(which[nas], collapse=", "), " in 'which' did not match any function names in ", safeDeparse(object) ,".")
    which <- which[!nas]
  }
  if(length(addConst) != length(which)) addConst <- rep(addConst, length=length(which))
    
  
  ci.RW <- function(fhat, base, terms, i, j, object, level, addConst){
    fctV <-
      function(m, indGrp, indPen, indUnpen){
        #Cov(hat.beta, hat.b-b) for bias-adjusted empirical Bayes CIs (s. Ruppert/Wand(2003), Semiparametric Regression, p. 138 f.):
        #use V = cov(hat.fixef, hat.ranef) = sigma.eps^2 (C'C + sigma.eps^2/sigma.b^2 D)^-1; C=[XZ]*sqrt(W), D = blockdiag(0, I_dim(b))
        
        C <- cBind(m@X[,indUnpen, drop=F], t(as.matrix(m@Zt[indPen,])))
        if(length(m@var)) C <- C * sqrt(1/m@var)
        
        V <- crossprod(C)
        # FIXME: this works only for scalar ST and length(indGrp=1)- don't use if allPen=T! 
        if(m@ST[[indGrp]] > 0){
          diag(V)[-(1:length(indUnpen))] <- diag(V)[-(1:length(indUnpen))] + m@ST[[indGrp]]^-2
        } else {
          #FIXME: HACK: V is not invertible for var(ranef)=0, use var(ranef)=10^-9 instead 
          diag(V)[-(1:length(indUnpen))] <- diag(V)[-(1:length(indUnpen))] + 10^9
        }
        return(sigma(m)^2 * solve(V))
      }
    
    z <- qnorm(1-(1-level)/2)
    indUnpen <- if(addConst){
      c(attr(terms[[i]],"indConst")[[j]], attr(terms[[i]],"indUnpen")[[j]])
    } else attr(terms[[i]],"indUnpen")[[j]]	
    cV <- as(chol(fctV(object, attr(terms[[i]],"indGrp")[[j]], 
                       attr(terms[[i]],"indPen")[[j]], indUnpen)), "sparseMatrix")
    C <- as(cBind(base$X[[j]], base$Z[[j]]), "sparseMatrix")
    sd <- apply(C, 1, function(x, cV){
      ctc <- cV %*% as(x, "sparseMatrix")
      return(sqrt(sum(ctc * ctc)))
      #return(sqrt((crossprod(cV%*%as(x, "sparseMatrix")))@x))	
    }, cV=cV)
    
    ci <- cbind(fhat - z*sd, fhat + z*sd)
    colnames(ci) <- c("lo", "hi")
    return(ci)
  }
  
  ans <- vector(mode="list", length=length(which))
  if(interval=="MCMC") attr(ans, "mcmc") <- mcmc 
  names(ans) <- names(terms)[which]
  indWhich <- 1
  
  for(i in which){
    #################################
    # set up / check newdata
    ################################
    if(!is.null(terms[[i]]$by)){
      lvls <- levels(object@frame[, safeDeparse(terms[[i]]$by)])#FIXME: in amerSetup: this will fail if terms[[i]]$x was only in the workspace but not in the supplied data.frame for the original call.
      hasBy <- TRUE
    } else hasBy <-FALSE	
    hasVarying <- !is.null(terms[[i]]$varying)
    
    if(is.null(newdata)){
      grid <- TRUE
      #FIXME: adapt this for 2d/3d-smooths
      #get range of covariates + sequence of values
      lim <- range(object@frame[, safeDeparse(terms[[i]]$x)], na.rm=T) #FIXME: in amerSetup: this will fail if terms[[i]]$x was only in the workspace but not in the supplied data.frame for the original call.
      newX <- seq(lim[1], lim[2], l=n)
      if(hasBy){
        newBy <- factor(rep(lvls, length=n), labels=lvls)
        data <- data.frame(newX, newBy)
        colnames(data) <- c(safeDeparse(terms[[i]]$x), safeDeparse(terms[[i]]$by))
      } else {
        data <- data.frame(newX)
        colnames(data) <- safeDeparse(terms[[i]]$x)
      }
      if(hasVarying){
        #varying covariate is set value of varying
        data <- cbind(data, rep(varying, nrow(data)))
        colnames(data)[NCOL(data)] <- safeDeparse(terms[[i]]$varying)
      }
    } else {
      grid <- FALSE
      data <- newdata
      n <- nrow(newdata)
      vnames <- safeDeparse(terms[[i]]$x)
      if(hasBy) vnames <- c(vnames,safeDeparse(terms[[i]]$by))
      if(hasVarying) vnames <- c(vnames, safeDeparse(terms[[i]]$varying))
      if(any(nas <- is.na(match(vnames, colnames(data))))) 
        stop("variable ", paste(vnames[nas], collapse=", "), "not found in given data.")
      data <- data[, colnames(data) %in% vnames, drop=F]
    }
    
    #################################
    #create basis:
    #################################
    base <- eval(terms[[i]], data)
    base <- expandBasis(base, 
                        by = eval(attr(base, "call")$by, data),  
                        varying = eval(attr(base, "call")$varying, data),
                        bySetToZero = !grid)
    
    # need to modify Z, X for allPen-Fits
    if(eval(terms[[i]]$allPen)){
      nlvl <- length(lvls)
      base0 <- base
      #where are the random effects for the penalized spline functions:
      ##use the first because the spline will have more levels (grps*(p-d)) than the grouping factor (grps)
      indZ <- reinds(object@Gp)[[ attr(terms[[i]],"indGrp") [[1]] [1] ]]  
      #how many penalized spline functions per level of by
      dimOneZ <- length(indZ)/length(lvls)
      useZ <- 1:dimOneZ
      if(grid) fullZ <- expandBasis(eval(terms[[i]], data), 
                                    by = NULL,  
                                    varying = eval(attr(base, "call")$varying, data),
                                    bySetToZero = FALSE)$Z
    }	
    
    nf <- ifelse(hasBy, length(lvls), 1)
    ans[[indWhich]] <- vector(mode="list", length = nf)
    names(ans[[indWhich]]) <-  if(hasBy) paste(safeDeparse(terms[[i]]$by), lvls, sep="") else names(base$X)
    for(j in seq_along(ans[[indWhich]])){
      #################################
      #calculate fits and cis
      #################################	
      
      if(eval(terms[[i]]$allPen)){
        ansInd <- 1
        #need to:
        #-append to Z extra columns for the random effects for base$X	 (+ a random intercept for the by-levels)
        #-set columns in base$Z not relevant for the current by-level to 0
        #-set base$X to zero
        
        base$Z[[1]] <- base0$Z[[1]]
        if(grid){
          #fill up rows having artifical zeroes because of structure of newBy with values
          base$Z[[1]][,useZ] <- fullZ[[1]]
        }	
        base$Z[[1]][,-useZ] <- 0
        
        #step to next block:
        useZ <- useZ + dimOneZ
        lvlInd <- rep(0, nlvl)
        lvlInd[j] <- 1
        
        X <- cBind("(Intercept)"=1, base0$X[[1]])
        if(!grid){
          use <- eval(terms[[i]]$by, data)==lvls[j]
          X[!use,] <- 0
        } 
        if(eval(terms[[i]]$diag)){
          #lmer switches order of terms in X, need to permute X-columns accordingly: 
          uNames <-  unlist(unique(sapply(object@ST[attr(terms[[i]],"indGrp")[[1]][-1]], dimnames)))
          X <- X[,uNames]
        }
        
        base$Z[[1]] <-  as(cBind(base$Z[[1]], kronecker(X, t(lvlInd), FUN = "*")),"sparseMatrix")
        base$X[[1]] <- matrix(0, nrow=n, ncol=0)
      } else {
        ansInd <- j
        #if(!grid && hasBy){
        #        #remove unnecessary rows from design
        #        use <- eval(terms[[i]]$by, data)==lvls[j]
        #        base$X[[ansInd]] <- base$X[[ansInd]][use,,drop=F]
        #        base$Z[[ansInd]] <- base$Z[[ansInd]][use,,drop=F]
        #}
      }	
      
      if(addConst[i]){
        #add columns for constant terms to X, append indUnpen:	
        byColumn <-if(hasBy && paste(safeDeparse(terms[[i]]$by),lvls[j],sep="") %in% names(object@fixef)){
          rep(1, nrow(base$X[[ansInd]]))
        } else numeric(0) 
        base$X[[ansInd]] <- cBind(byColumn, base$X[[ansInd]])	
        if("(Intercept)" %in% names(object@fixef)[attr(terms[[i]],"indConst")[[ansInd]]])
          base$X[[ansInd]] <- cBind(1,base$X[[ansInd]])
        
        indUnpen <- c(attr(terms[[i]],"indConst")[[ansInd]], attr(terms[[i]],"indUnpen")[[ansInd]])
      } else indUnpen <- attr(terms[[i]],"indUnpen")[[ansInd]]	
      
      fhat <- base$X[[ansInd]] %*% 
        object@fixef[indUnpen, drop = F] + 
        base$Z[[ansInd]] %*% 
        object@ranef[attr(terms[[i]],"indPen")[[ansInd]], drop = F] 
      
      if(!eval(terms[[i]]$allPen)){ 
        ci <- switch(interval,
                     "NONE" = matrix(NA, nrow=nrow(base$X[[ansInd]]), ncol=0),
                     "RW" = ci.RW(fhat, base, terms, i, j, object, level, addConst[i]))
      } else {
        #TODO: implement CIs for fits with allPen = T
        if(interval!="NONE" && j==1) warning("CIs for fits with allPen = T not yet implemented.")
        ci <- matrix(NA, nrow=nrow(base$X[[ansInd]]), ncol=0)
      }
      dataJ <- if(grid){
        data[,!(colnames(data)==safeDeparse(terms[[i]]$by)), drop=F]
      } else {
        ## if(!grid && hasBy){
        ##     data[use,] 
        ## } else 
        data  
      }	
      ans[[indWhich]][[j]] <- data.frame(dataJ, fhat= as.matrix(fhat), ci)
    }# end for j
    indWhich <- indWhich + 1
  }#end for i
  return(ans)
}



plotF <- function(object, which, n=100, interval = "RW", addConst = TRUE, trans=I,  
                  level = 0.9, sims = 1000, auto.layout = TRUE, rug = TRUE, legendPos="topright", ...)
{
  # FIXME: add option for centering function estimates at zero/ anchoring at mean of all other covariates?
  # FIXME: valid confints for trans? 	
  terms <- object@smooths
  if(missing(which)) which <- seq_along(terms)
  if(is.character(which)) {
    which <- match(which, names(terms))
    if(any(nas <- is.na(which))) 
      warning("entry ", paste(which[nas], collapse=", "), " in 'which' did not match any function names in ", safeDeparse(object) ,".")
    which <- which[!nas]
  }
  if(length(legendPos) != length(which)) legendPos <- rep(legendPos, length=length(which))
  if(length(addConst) != length(which)) addConst <- rep(addConst, length=length(which))
  
  interval <- toupper(interval)
  
  res <- getF(object = object, which = which, n = n, newdata=NULL, interval = interval, addConst = addConst, level = level, sims = sims)
  allPen <- sapply(object@smooths[which], function(x) eval(x$allPen))
  
  if(auto.layout){
    oldpar <- NULL
    on.exit(par(oldpar))
    nf <- length(res)
    oldpar <- par(mfrow = set.mfrow(Nparms=nf))
  }
  
  
  plot1F <- function(x, interval, legendPos, ...){
    dots <- list(...)
    fhat <- sapply(x, function(x){trans(x$fhat)})
    if(interval) ci <- lapply(x, function(x){trans(cbind(x$lo, x$hi))})
    cov <- sapply(x, function(x){x[,1]})
    if(is.null(dots$ylim)){
      ylim <- range(fhat)
      if(interval) ylim <- range(ylim, ci)
    } else {
      ylim <- dots$ylim
      dots <- dots[names(dots)!="ylim"]
    }	
    if(is.null(dots$xlim)){
      xlim <- range(cov)
    } else {
      xlim <- dots$xlim
      dots <- dots[names(dots)!="xlim"]
    }
    do.call(plot, c(list(x=-2*xlim[1]-10, y=0, ylim = ylim, xlim = xlim, ylab="", xlab=colnames(x[[1]])[1]), dots))
    do.call(matlines, c(list(x = cov, y = fhat, col=1:length(x), lty=1), dots))
    if(interval) for(i in 1:length(ci)) do.call(matlines, c(list(x=cov[,i], y=ci[[i]], col=i, lty=2),dots))
    if(legendPos != "none" && length(x)>1){
      do.call(legend,c(list(x=legendPos, legend=names(x), lty=1, col=1:length(x)),dots))
    }	
  }
  dots <- list(...)
  for(i in seq_along(res)){
    #FIXME: change as CIs for allPen become available
    plot1F(res[[i]], interval = !(interval=="NONE")&&!allPen[i], legendPos = legendPos[i], ...)
    if(is.null(dots$ylab)){
      ylab <- ifelse(addConst[i], paste(names(res)[i], "+ const"), names(res)[i])
      if(any(trans(-2:2)!= (-2:2))) ylab <- paste(safeDeparse(match.call()$trans),"(",ylab,")",sep="")
    } else{
      ylab <-dots$ylab
      dots <- dots[names(dots)!="ylab"]
    }	
    do.call(title, c(list(ylab= ylab), dots))
    if(rug){
      if(length(res[[i]])==1){
        rug(object@frame[,colnames(res[[i]][[1]])[1]], ...)
      } else {
        nlvls <- length(res[[i]]) 
        lvls <- levels(object@frame[, safeDeparse(object@smooths[[i]]$by)])
        for(j in 1:nlvls){
          use <- object@frame[,safeDeparse(object@smooths[[i]]$by)] == lvls[j]
          rug(object@frame[use, colnames(res[[i]][[1]])[1]], col =j, ...)
        }	
      }	
    } 
  }
  invisible(res)
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API