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Abstract

The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings
Monte Carlo Markov Chain algorithm where the proposal density function is a multivari-
ate Gaussian based on a local, second-order Taylor series expansion of log-density. The
mean of the proposal function is the full Newton step in Newton-Raphson optimization
algorithm. Taking advantage of the local, multivariate geometry captured in log-density
Hessian allows SNS to be more efficient than univariate samplers, approaching indepen-
dent sampling as the density function increasingly resembles a multivariate Gaussian. SNS
requires the log-density Hessian to be negative-definite everywhere in order to construct
a valid proposal function. This property holds, or can be easily checked, for many GLM-
like models. When initial point is far from density peak, running SNS in non-stochastic
mode, i.e., taking the Newton step with line search, allows the MCMC chain to converge
to high-density areas faster. For high-dimensional problems, partitioning of state space
into lower-dimensional subsets, and applying SNS to the subsets within a Gibbs sampling
framework can significantly improve the mixing of SNS chains. In addition to the above
strategies for improving convergence and mixing, sns offers a rich set of diagnostics and
visualization capabilities, as well as a function for sample-based calculation of Bayesian
predictive posterior distributions.

Keywords: monte carlo markov chain, metropolis-hastings, newton-raphson optimization,
negative-definite hessian, log-concavity.

1. Introduction

In most real-world applications of Monte Carlo Markov Chain (MCMC) sampling, the prob-
ability density function (PDF) being sampled is multidimensional. Univariate samplers such
as Slice Sampler (Neal 2003) and Adaptive Rejection Sampler (Gilks and Wild 1992) can
be embedded in the Gibbs sampling framework (Geman and Geman 1984) to sample from
multivariate PDFs (Mahani and Sharabiani 2015b). Univariate samplers generally have few
tuning parameters, making them ideal candidates for black-box MCMC software such as
JAGS (Plummer 2013) and OpenBUGS (Thomas, O’Hara, Ligges, and Sturtz 2006). How-
ever, they become less effective as PDF dimensionality rises and dimensions become more
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correlated (Girolami and Calderhead 2011). Therefore, development - and software imple-
mentation - of efficient, black-box multivariate MCMC algorithms is of great importance to
widespread application of probabilistic models in statistics and machine learning.

The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings
MCMC algorithm (Hastings 1970), where the proposal distribution is a locally-fitted multi-
variate Gaussian resulting from second-order Taylor series expansion of the log-density. In its
current implementation, SNS requires the log-density to be twice-diffenrentiable and globally
concave, or equivalently that its Hessian matrix be negative-definite everywhere. For many
Generalized Linear Models (GLMs) these conditions are satisfied (Gilks and Wild 1992), and
the invariance theorem of Mahani and Sharabiani (2015a) allows Hessian negative-definiteness
to be studied and proven in the much lower-dimensional space of base distributions, rather
than the high-dimensional space of regression coefficients.

SNS has appeared in the literature under several variations and labels. Gamerman (1997)
extend Iterative Reweighted Least Squares (IRLS) - the primary estimation technique for
GLM models - to MCMC sampling by adding a Metropolis-Hastings step to it. Given that
IRLS is a close cousin of Newton-Raphson optimization, their method can be considered a
specialization of SNS for GLM models. Qi and Minka (2002) present what they call ‘Hessian-
based Metropolis-Hastings’ (HMH), which is nearly identical to SNS, but they do not address
the high-dimensional mixing problem, nor do they provide an open-source software imple-
mentation. More recently, the simplified manifold Metropolis adjusted Langevin Algorithm
(MMALA) of Girolami and Calderhead (2011) is very similar to SNS with the addition a
tunable step size, or learning rate. The software accompanying their paper is written in MAT-
LAB (MATLAB 2014). The R package sns, to our knowledge, is the first open-source implem-
nentation of the SNS algorithm, including extensions for improving convergence (rnd andnnr
arguments) and mixing (part argument), diagnostic and visualization methods (summary.sns
and plot.sns), and sample-based prediction (predict.sns).

The paper is organized as follows. In Section 2, we review the theoretical background for
SNS, including an overview of Metropolis-Hastings algorithms, followed by the multivariate
Gaussian proposal PDF used in SNS. In Section 3, we discuss the implementation of SNS
algorithm in the sns package. Section 4 offers several examples to illustrate the usage of sns.
Finally, Section 5 provides a summary and pointers for future extensions to the software as
well as potential research directions.

2. Theory

We begin with a brief overview of the Metropolis-Hastings algorithm.

2.1. Metropolis-Hastings algorithm

In Metropolis-Hastings (MH) MCMC sampling of the PDF, p(z), we generate a sample z∗

from the proposal density function q(z|zτ ), where zτ is the current state. We then accept the
proposed state z∗ with probability A(z∗, zτ ), where:

A(z∗, zτ ) = min

(
1 ,

p(z∗)q(zτ |z∗)
p(zτ )q(z∗|zτ )

)
(1)
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The MH transitions satisfy detailed balance:

p(z)q(z|z′)A(z′, z) = min(p(z)q(z|z′), p(z′)q(z′|z))
= min(p(z′)q(z′|z), p(z)q(z|z′))
= p(z′)q(z′|z)A(z, z′)

(2)

The detailed balance property ensures that p(z) is invariant under MH transitions. For a
discussion of ergodicity of MH algorithm, see Roberts and Rosenthal (1999).

2.2. SNS proposal density

SNS proposal density is a multivariate Gaussian fitted locally to the density being sampled,
using the second-order Taylor-series expansion of the log-density:

f(x) ≈ f(x0) + g(x0)
> (x− x0) +

1

2
(x− x0)

>H(x0) (x− x0) (3)

where f : RK → R, and g and H are the gradient vector and Hessian matrix for f , respectively,
of dimensions K and K ×K. Assuming that f is globally concave, the above approximation
is equivalent to fitting the following multivariate Gaussian (which we refer to as F (x)) to the
PDF:

F (x) =
1

(2π)K/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(4)

By comparing Equations 3 and 4, we see that the precision matrix is the same as negative
Hessian: Σ−1 = −H(x0). The mean of the fitted Gaussian maximizes its log, and therefore:

µ = x0 −H−1(x0) g(x0) (5)

We can now formally define the (multivariate Gaussian) proposal density q(. |x) as:

q(. |x) = N (x−H−1(x) g(x) , −H−1(x)) (6)

Note that Equation 5 is simply the full Newton step (Nocedal and Wright 2006a). We can
therefore think of SNS as the stochastic counterpart of Newton-Raphson (NR) optimization.
In NR optimization, we select the mean of the fitted Gaussian as the next step, while in
SNS we draw a sample from the fitted Gaussian and apply MH test to accept or reject it.
Also, note that in the special case where the sampled PDF is Gaussian, f(x) is quadratic and
therefore the proposal function is identical to the sampled PDF. In this case A(z′, z) is always
equal to 1, implying an acceptance rate of 100%.

3. Software implementation and features

3.1. Overview

The workhorse of sns package is the sns function, responsible for implementation of MH
algorithm using the multivariate Gaussian proposal density described in Section 2.2. sns

implements the following steps:

1. Evaluate the log-density function and its gradient and Hessian at xold: fold,gold,Hold.
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2. Construct the multivariate Gaussian proposal function at q(.|xold) using Equation 6 and
x = xold.

3. Draw a sample xprop from q(.|xold), and evaluate logqprop = log(q(xprop|xold)).

4. Evaluate the log-density function and its gradient and Hessian at xprop: fprop,gprop,Hprop.

5. Construct the multivariate Gaussian proposal function at q(.|xprop) using Equation 6
and x = xprop, and evaluate logqold = log(q(xold|xprop)).

6. Calculate the ratio r = exp((fprop − fold) + (logqold − logqprop)).

7. If r ≥ 1 accept xprop: xnew ← xprop. Else, draw a random deviate s from a uniform
distribution over [0, 1). If s < r, then accept xprop: xnew ← xprop, else reject xprop:
xnew ← xold.

Fitting the multivariate Gaussian in steps 2 and 5 is done via calls to the private function
fitGaussian. We use the functions dmvnorm and rmvnorm from package mvtnorm to calculate
the log-density of, and draw samples from, multivariate Gaussian proposal functions.

There are two important arguments in sns, namely rnd and part. The first argument, rnd,
controls whether the algorithm should run in stochastic or MCMC mode (which is the default
choice), or in non-stochastic or Newton-Raphson (NR) mode. The second argument, part,
controls the state space partitioning strategy. These arguments and their roles are described
in Section 3.2.

sns.run is a wrapper around sns, and offers the following functionalities:

1. Convenience of generating multiple samples via repeated calls to sns. After the first
call, the Gaussian fit object (attached as attribute gfit in the returned value from sns)
is fed by sns.run back to sns via argument gfit, in order to avoid unnecessary fitting
of the proposal function at current value.

2. Collecting diagnostic information such as log-probability (time series), acceptance rate,
relative deviation from quadratic approximation (time series), and components of MH
test. These diagnostic measures are discussed in Section 3.3, and their use is illustrated
via examples in Section 4.

The generic methods summary.sns, plot.sns and predict.sns provide diagnostic, visual-
ization, and prediction capabilities, discussed in Sections 3.3 and 3.4, and illustrated via
examples in Section 4.

3.2. Improving convergence and mixing

NR mode: Far from the distribution mode, the local multivariate Gaussian fit can be severely
different from the PDF, leading to small overlap between the two, low acceptance rate and
hence bad convergence. This can be overcome by spending the first few iterations in non-
stochastic or NR mode, where instead of drawing from the proposal function we simply accept
its mean as the next step. Rather than taking a full Newton step, we have implemented line
search (Nocedal and Wright 2006b) to ensure convergence to the PDF maximum. To use
sns in NR mode, users can set the argument rnd to FALSE. In NR mode, each iteration is
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guaranteed to increase the log-density. Using the NR mode during the initial burn-in phase
is illustrated in Section 4. In sns.run, the argument nnr controls how many initial iterations
to be performend in NR mode.

State space partitioning: Even when near the PDF maximum, the fitted Gaussian can be
severely different from the PDF. This can happen if the PDF has a significant third derivative,
a phenomenon that we have observed for high-dimensional problems, especially when the
number of observations is small. To improve bad mixing in high dimensions, we use a strategy
which we refer to as ‘state space partitioning’, where state space is partitioned into disjoint
subsets and SNS is applied within each subset, wrapped in Gibbs sampling. This functionality
is available via the part argument, which is a list containing the set of state space dimensions
belonging to each subset. Convenience functions sns.make.part and sns.check.part allow
users to easily create partition lists and check their validity, respectively.

3.3. Diagnostics

sns includes a rich set of diagnostics which can be accessed via functions summary.sns and
plot.sns. Some of these are generic measures applicable to all MCMC chains, some are
specific to MH-based MCMC algorithms, and some are even further specialized for SNS as a
particular flavor of MH. Where possible, we have used the library coda, but opted to create
and maintain an independent set of functions due to their specialized and extended nature.

MCMC diagnostics: In summary.sns, we calculate the usual MCMC chain summaries
including mean, standard deviation, quantiles, and effective sample size. We also calculate a
sample-based p-value for each coordinate. In plot.sns we have log-density trace plot, state
vector trace plots, effective sample size by coordinate, state vector histograms, and state
vector autocorrelation plots.

MH diagnostics: In summary.sns, we calculate the acceptance rate of MH transition pro-
posals. If mh.diag flag is set to TRUE, all 4 components of the MH test (log.p, log.p.prop,
log.q and log.q.prop) are returned as well.

SNS diagnostics: In summary.sns, we return reldev.mean (if sns.run was called with
mh.diag set to TRUE), defined as the average relative deviation of log-density change (with re-
spect to PDF maximum) from quadratic approximation (also constructed at PDF maximum).
The location of PDF maximum is extracted from the Gaussian fit in the last iteration under
NR mode. The higher this value, the more likely it is for the SNS to exhibit bad mixing.
This is illustrated in Section 4. For reldev.mean to be valid, the user must ensure that the
value of the argument nnr supplied to sns.run is sufficiently high to ensure convergence at
the end of NR phase.

3.4. Full Bayesian Prediction

The function predict.sns allows for full Bayesian prediction, using a sample-based represen-
tation of predictive posterior distribution. It accepts an arbitrary function of state vector as
argument fpred, and applies the function across all samples of state vector, supplied in the
first argument, which must be an output of sns.run. The core philosophy in full Bayesian
prediction is to postpone summarization of samples until the last step. For example, rather
than supplying the expected values of coefficients into a function, we supply the samples
and take the expected value after applying the function. Following this proper approach is
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important for several reasons:

1. Mathematically, an arbitrary function is not commutable with the expected value op-
erator. Therefore, applying expected value early produces incorrect results.

2. For a similar reason, confidence intervals cannot be propagated through arbitrary func-
tions. Therefore, correct uncertainty measurement also requires a full Bayesian ap-
proach.

4. Using sns

In this section, we illustrate how sns can be used via several examples. First, we launch an
R session and load the sns package as well mvtnorm (used for evaluating the multivariate
Gaussia log-density in example 1):

R> library(sns)

R> library(mvtnorm)

4.1. Example 1: Multivariate Gaussian

Using sns to sample from a multivariate Gaussian is a contrived, but pedagogical, exam-
ple. Since log-density for a multivariate Gaussian is quadratic, its second-order Taylor series
expansion is not approximate but exact. In other words, the proposal function becomes
location-independent, and equal to the sampled distribution. This means that 1) the MH test
is always accepted, and 2) consecutive samples are completely independent, and hence the
resulting chain is no longer Markovian. Of course, since we know how to sample from multi-
variate Gaussian proposal functions, we might as well directly sample from the multivariate
Gaussian distribution. Hence, the pedagogical nature of this example. To utilize sns, we must
first implement the log-density and its gradient and Hessian:

R> logdensity.mvg <- function(x, mu, isigsq) {

+ f <- dmvnorm(x = as.numeric(x)

+ , mean = mu, sigma = solve(isigsq), log = TRUE)

+ g <- - isigsq %*% (x - mu)

+ h <- -isigsq

+ return (list(f = f, g = g, h = h))

+ }

We now draw 500 samples from this log-desity, using pre-specified values for mu (mean vector)
and isigsq (inverse of the covariance matrix, or precision matrix) in a 3-dimensional state
space:

R> K <- 3

R> mu <- runif(K, min = -0.5, max = +0.5)

R> isigsq <- matrix(runif(K*K, min = 0.1, max = 0.2), ncol = K)

R> isigsq <- 0.5*(isigsq + t(isigsq))
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R> diag(isigsq) <- rep(0.5, K)

R> x.init <- rep(0.0, K)

R> x.smp <- sns.run(x.init, logdensity.mvg, niter = 500

+ , mh.diag = TRUE, mu = mu, isigsq = isigsq)

Next, we use the summary.sns function to view some of the diagnostics:

R> summary(x.smp)

Stochastic Newton Sampler (SNS)

state space dimensionality: 3

total iterations: 500

NR iterations: 10

burn-in iterations: 250

end iteration: 500

thinning interval: 1

sampling iterations (before thinning): 250

acceptance rate: 1

mean relative deviation from quadratic approx: 3.93e-15 % (post-burnin)

sample statistics:

(nominal sample size: 250)

mean sd ess 2.5% 50% 97.5% p-val

1 -0.497340 1.505447 250.000000 -3.099683 -0.743241 2.5354 0.696

2 0.033345 1.670739 250.000000 -3.151353 0.028756 3.0644 1.000

3 0.044322 1.476031 250.000000 -2.568027 0.097083 2.7600 0.944

summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.

250 250 250 250 250 250

As expected, the acceptance rate is 100%, and there is no deviation from quadratic approxi-
mation, for SNS sampling of a multivariate Gaussian.

In real-world applications, the Gaussian proposal function is only an approximation for the
sampled distribution (since log-density is not quadratic), creating the Markovian dependency
and less-than-perfect acceptance rate. We study one such example next.

4.2. Example 2: Bayesian Poisson regression

Generalized Linear Models (GLMs) (Nelder and Baker 1972) are an important family of statis-
tical models with applications such as risk analysis (Sobehart et al. 2000), public health (Shara-
biani et al. 2011) and political science (Gelman and Hill 2007). GLMs can be extended to
incorporate data sparseness and heterogeneity via the Hierarchical Bayesian framework (Rossi
et al. 2005) or to account for repeated measurements and longitudinal data via Generalized
Linear Mixed Model (McCulloch 2006). With properly-chosen link functions, many GLMs are
known - or can be easily proven - to have globally-concave log-densities with negative-definite
Hessian matrices (Gilks and Wild 1992; Mahani and Sharabiani 2015a). As such, GLMs are
excellent candidates for SNS. Embedded in Bayesian frameworks, they continue to enjoy log-
concavity assuming the same property holds for prior terms, according to the Bayes’ rule and
the invariance of concavity for adding functions.
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In our second example, we illustrate how to apply sns to the log-likelihood of Poisson regres-
sion. As before, we start with constructing the log-density, using the expander framework of
RegressionFactory package:

R> library(RegressionFactory)

R> loglike.poisson <- function(beta, X, y) {

+ regfac.expand.1par(beta, X = X, y = y

+ , fbase1 = fbase1.poisson.log)

+ }

Now we simulate data from the generative model:

R> K <- 5

R> N <- 1000

R> X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)

R> beta <- runif(K, -0.5, +0.5)

R> y <- rpois(N, exp(X %*% beta))

For reference, we do a maximum-likelihood (ML) estimation of the coefficients using glm

command:

R> beta.init <- rep(0.0, K)

R> beta.glm <- glm(y ~ X - 1, family = "poisson", start = beta.init)$coefficients

As mentioned before, sns can be run in non-stochastic mode, which is equivalent to Newton-
Raphson optimization with line search. Results should be identical, or very close, to glm

results:

R> beta.sns <- sns.run(beta.init, fghEval = loglike.poisson

+ , niter = 20, nnr = 20, X = X, y = y)

R> beta.nr <- beta.sns[20, ]

R> cbind(beta.glm, beta.nr)

beta.glm beta.nr

X1 -0.4663463 -0.4663463

X2 -0.2170187 -0.2170187

X3 -0.5840998 -0.5840998

X4 -0.1261674 -0.1261674

X5 0.3182123 0.3182123

The primary use-case for sns is not ML estimation, but rather MCMC sampling of the distri-
bution. To do this, we perform the first few iterations in non-stochastic mode (20 iterations
here), and then switch to stochastic mode for the remaining 180 iterations:

R> beta.smp <- sns.run(beta.init, loglike.poisson

+ , niter = 200, nnr = 20, mh.diag = TRUE, X = X, y = y)
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Figure 1: Log-probability trace plot for Poisson regression problem with K = 5 and N = 1000.
Vertical line separates non-stochastic mode (left, 20 iterations) from stochastic mode (right,
180 iterations).

Examining the log-probability trace plot (Figure 1) shows an expected pattern: During non-
stochastic phase (left of vertical line) log-probability rises steadily while approaching the
peak. During MCMC sampling, on the other hand, PDF maximum forms an upper bound
for the MCMC movements, and the chain occasionally visits low-probability areas. The plot
is created using the following line:

R> plot(beta.smp, select = 1)

The plot.sns function offers 4 other types of plots, besides the log-probability trace plot.
We refer the reader to the package documentation for details. Further diagnostic information
can be accessed via the summary.sns function:

R> summary(beta.smp)

Stochastic Newton Sampler (SNS)

state space dimensionality: 5
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total iterations: 200

NR iterations: 20

burn-in iterations: 100

end iteration: 200

thinning interval: 1

sampling iterations (before thinning): 100

acceptance rate: 0.97

mean relative deviation from quadratic approx: 0.33 % (post-burnin)

sample statistics:

(nominal sample size: 100)

mean sd ess 2.5% 50% 97.5%

1 -0.470714 0.111004 127.149650 -0.689517 -0.468404 -0.2765

2 -0.219657 0.117576 100.000000 -0.445595 -0.202877 0.0338

3 -0.562456 0.112047 142.837102 -0.793640 -0.564578 -0.3469

4 -0.106050 0.106618 100.000000 -0.293523 -0.105121 0.1310

5 0.305221 0.106901 64.291409 0.096068 0.311385 0.5082

p-val

1 0.01 **

2 0.08 .

3 0.01 **

4 0.30

5 0.01 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.

64.29 100.00 100.00 106.90 127.10 142.80

The summary.sns function discards the first half of the samples as burn-in by default, be-
fore calculating sample statistics and acceptance. This behavior can be controlled via the
argument nburnin. Arguments end and thin have behavior similar to their counterparts in
the as.mcmc function of coda package. We observe two numbers in the summary print-out:
Firstly, acceptance rate is less than 100%, contrary to the case with a multivariate Gaus-
sian PDF (example 1). Secondly, the mean relative deviation from quadratic approximation
(reldev.mean) is now non-zero, again reflecting non-Gaussianity of the poisson likelihood
PDF. The number (<1%) is still small, however, leading to high acceptance rate and good
mixing of the chain.

Next, we want to predict the response variable in Poisson regression model, given new values
of the explanatory variables. We distinguish between two types of prediction: 1) predicting
mean response, 2) generating samples from posterior predictive distribution. We illustrate
how to do both using the predict.sns function. We begin by implementing the mean predic-
tion function, which simply applies the inverse link function (exponential here) to the linear
predictor. (For better comparison between the two prediction modes, we increase number of
samples to 1000)

R> beta.smp <- sns.run(beta.init, loglike.poisson

+ , niter = 1000, nnr = 20, mh.diag = TRUE, X = X, y = y)
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R> predmean.poisson <- function(beta, Xnew) exp(Xnew %*% beta)

The following single line performs sample-based prediction of mean response (using X in lieu
of Xnew for code brevity):

R> ymean.new <- predict(beta.smp, predmean.poisson

+ , nburnin = 100, Xnew = X)

ynew is a matrix of N (1000) rows and niter - nburnin (900) columns. Each row corresponds
to an observation (one row of Xnew), and each column corresponds to a prediction sample (one
row of beta.smp after burn-in).

We can also generate samples from posterior predictive distribution as follows:

R> predsmp.poisson <- function(beta, Xnew)

+ rpois(nrow(Xnew), exp(Xnew %*% beta))

R> ysmp.new <- predict(beta.smp, predsmp.poisson

+ , nburnin = 100, Xnew = X)

Comparing prediction summaries is illuminating:

R> summary(ymean.new)

R> summary(ysmp.new)

prediction sample statistics:

(nominal sample size: 900)

mean sd ess 2.5% 50% 97.5%

1 0.865031 0.064676 900.000000 0.742812 0.862279 1.0019

2 1.267430 0.106293 900.000000 1.077680 1.259413 1.4882

3 1.405566 0.073465 731.714663 1.261902 1.403256 1.5501

4 0.889331 0.063354 900.000000 0.773876 0.887845 1.0236

5 1.154694 0.081166 900.000000 1.009981 1.150145 1.3199

6 1.206132 0.076625 808.257228 1.071271 1.202108 1.3671

...

prediction sample statistics:

(nominal sample size: 900)

mean sd ess 2.5% 50% 97.5%

1 0.87333 0.93240 900.00000 0.00000 1.00000 3

2 1.28000 1.15218 900.00000 0.00000 1.00000 4

3 1.37444 1.19640 900.00000 0.00000 1.00000 4

4 0.87556 0.93864 900.00000 0.00000 1.00000 3

5 1.15000 1.02296 526.62253 0.00000 1.00000 3

6 1.23000 1.10987 900.00000 0.00000 1.00000 4

...

In the limit of infinite samples, the mean predictions from the two methods will be equal,
and they are quite close based on 900 samples above. However, standard deviation of pre-
dictions is much larger for predsmp.poisson compared to predmean.poisson, as the former
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combines the uncertainty of coefficient values (represented in the sd values for beta’s) with
the uncertainty of samples from Poisson distribution around the mean, i.e. the sd of Poisson
distribution. Also note that, as expected, quantiles for predsmp.poisson are discrete since
the predictions are discrete, while the quantiles for predmean.poisson are continuous as the
predictions are continuous in this case.

4.3. Example 3: High-dimensional Bayesian Poisson regression

Contrary to standard Metropolis variants with multivariate Gaussians centered on current
point, SNS is an aggressive, non-local MCMC algorithm as it seeks to construct a global,
Gaussian approximation of the PDF. Under favorable conditions, this can lead to uncorrelated
chains and efficient sampling, with the extreme case of perfectly uncorrelated samples for a
multivariate Gaussian distribution. An important pathological case arises when the state
space dimensionality is high. Continuing with the Poisson regression example, we increase K
from 5 to 100, while holding N = 1000. To illustrate that the problem is not covergence but
mixing, we explicitly use the glm estimate (mode of PDF) as the initial value for the MCMC
chain:

R> K <- 100

R> X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)

R> beta <- runif(K, -0.5, +0.5)

R> y <- rpois(N, exp(X %*% beta))

R> beta.init <- glm(y ~ X - 1, family = "poisson")$coefficients

R> beta.smp <- sns.run(beta.init, loglike.poisson

+ , niter = 100, nnr = 10, mh.diag = TRUE, X = X, y = y)

R> summary(beta.smp)

Stochastic Newton Sampler (SNS)

state space dimensionality: 100

total iterations: 100

NR iterations: 10

burn-in iterations: 50

end iteration: 100

thinning interval: 1

sampling iterations (before thinning): 50

acceptance rate: 0.16

mean relative deviation from quadratic approx: 8.35 % (post-burnin)

sample statistics:

(nominal sample size: 50)

mean sd ess 2.5% 50% 97.5% p-val

1 0.421594 0.109166 9.760501 0.164051 0.447386 0.5166 0.02 *

2 0.219483 0.105112 4.913961 -0.081762 0.223558 0.4021 0.12

3 0.203045 0.078498 5.749257 0.060661 0.250520 0.3404 0.02 *

4 -0.100247 0.069272 2.173084 -0.249282 -0.066971 -0.0368 0.04 *

5 0.111424 0.064391 4.121670 0.032764 0.122196 0.2168 0.02 *

6 0.115763 0.106802 5.238306 -0.064935 0.089167 0.2260 0.24

---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

...

summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.096 4.095 5.335 6.991 6.694 72.500

We see a significant drop in acceptance rate as well as effective sample sizes for the coefficients.
Also note that mean relative deviation from quadratic approximation is now nearly 10x larger
than the value for K = 5. To improve mixing, we use the ‘state space partitioning’ strategy
of sns, available via the part argument of sns and sns.run. This leads to SNS sampling
of subsets of state space wrapped in Gibbs cycles, with each subset being potentially much
lower-dimensional than the original, full space. This strategy can significantly improve mixing:

R> beta.smp.part <- sns.run(beta.init, loglike.poisson

+ , niter = 100, nnr = 10, mh.diag = TRUE

+ , part = sns.make.part(K, 10), X = X, y = y)

R> summary(beta.smp.part)

Stochastic Newton Sampler (SNS)

state space dimensionality: 100

state space partitioning: 10 subsets

total iterations: 100

NR iterations: 10

burn-in iterations: 50

end iteration: 100

thinning interval: 1

sampling iterations (before thinning): 50

acceptance rate: 0.94

sample statistics:

(nominal sample size: 50)

mean sd ess 2.5% 50% 97.5% p-val

1 0.3969166 0.0885804 39.1691610 0.2100833 0.3964180 0.5402 0.02

2 0.1896767 0.1152469 50.0000000 -0.0248610 0.1865183 0.3670 0.08

3 0.1579658 0.0947398 28.9506128 -0.0122672 0.1549021 0.3189 0.08

4 -0.1147680 0.0980224 29.6244795 -0.2697117 -0.1198215 0.0670 0.32

5 0.1540473 0.1003371 50.0000000 -0.0239445 0.1473975 0.3207 0.12

6 0.1466464 0.1027434 32.5836802 -0.0095312 0.1411849 0.3683 0.08

1 *

2 .

3 .

4

5

6 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

...
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summary of ess:

Min. 1st Qu. Median Mean 3rd Qu. Max.

12.77 28.89 50.00 41.59 50.00 93.70

Notice the improved acceptance rate as well as effective sample sizes. A comparison of log-
probability trace plots confirms better mixing after convergence to PDF mode (see Figure 2).

R> par(mfrow = c(1,2))

R> plot(beta.smp, select = 1)

R> plot(beta.smp.part, select = 1)

5. Summary

In this paper we presented sns, an R package for Stochastic Newton Sampling of twice-
differentiable, log-concave PDFs, where a multivariate Gaussian resulting from second-order
Taylor series expansion of log-density is used as proposal function in a Metropolis-Hastings
framework. Using an initial non-stochastic mode, equivalent to Newton-Raphson optimization
with line search, allows the chain to rapidly converge to high-density areas, while ‘state space
partitioning’, Gibbs sampling of full state space in lower-dimensional blocks, allows SNS to
overcome mixing problems while sampling from high-dimensional PDFs. There are several
opportunities for further research and development.

Beyond twice-differentiability and log-concavity: Current version of SNS requires the
log-density to be twice-differentiable and concave. In many real-world application, the pos-
terior PDF does not have a negative-definite Hessian, or it cannot be proven to have such
a property. In such cases, SNS would not be applicable to the entire PDF. However, if one
can identify blocks within the full Hessian that does enjoy such property, then SNS can be
combined with other, more generic sampling algorithms such as slice sampler or HMC, all
embedded in a Gibbs cycle. The implementation would be similar to that of state space par-
titioning approach in sns, but replacing SNS with alternative samplers for some subsets. An
alternative approach is discussed in Geweke and Tanizaki (2001) in the context of state-space
models, where non-concave cases are handled by utilizing exponential and uniform distribu-
tions. Convergence and mixing properties of such extensions to general cases must be carefully
studied. An important situation where twice-differentiability is violated is in the presence of
boundary conditions. The current SNS algorithm assumes unconstrained state space. One
way to deal with constrained subspaces is, again, to mix and match SNS and other samplers
within Gibbs framework. For example, the slice sampler algorithm implemented in MfUSam-
pler is capable of dealing with boxed constraints. It can therefore be assigned to subspaces
with constraints, and the unconstrained subspaces can be handled by SNS. Further research
is needed in order to relax twice-differentiability and log-concavity requirements for SNS.

Optimized state space partitioning:

Performance benchmarking:

There are several opportunities for further research and development:

1. Mixing properties of SNS must be better studied. Preliminary, one-dimensional anal-
ysis has provided sufficient conditions for the chain not to diverge too much from the
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distribution mode, but extension to the real-world, high-dimensional case remains to be
done. This understanding can in turn be used to better select the size of state space
blocks in the partitioning strategy.

2. Currently, SNS requires strict global log-concavity for the PDF. Extending the algorithm
to more general cases can improve its usefulness.

3. Currently, SNS cannot handle boundary conditions. Instead, they must be implemented
via variable transformations, such as link functions in GLM models.

4. Impact of data centering and scaling on convergence and mixing of chains, not just for
SNS but for MCMC algorithms in general, including Gibbs sampling.
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Figure 2: Comparison of log-probability trace plots for N = 1000 and K = 100, without (left)
and with (right) state space partitioning using 10 subsets.
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