Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:7a4cd2a5ec73a061be17605597c4b1660b799026
  • Code
  • Branches (8)
  • Releases (0)
    • Branches
    • Releases
    • HEAD
    • refs/heads/dev
    • refs/heads/fortsolving
    • refs/heads/grb-callback
    • refs/heads/master
    • refs/heads/mip_modeling
    • refs/heads/setgraph
    • refs/heads/smithhicks
    • refs/heads/star-bound
    No releases to show
  • 7540e3e
  • /
  • include
  • /
  • pdssolve.hpp
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
content badge Iframe embedding
swh:1:cnt:676fa5ac71b029e6b7e940e995ebc650370c3022
directory badge Iframe embedding
swh:1:dir:91efda3c6673ad324a0234cdfd207eed2e0bc7c8
revision badge
swh:1:rev:3df45676d3235c0b37259f928853a2f08253893a
snapshot badge
swh:1:snp:7a4cd2a5ec73a061be17605597c4b1660b799026
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 3df45676d3235c0b37259f928853a2f08253893a authored by Max Göttlicher on 06 February 2023, 10:03:41 UTC
replaced pimpl with forward declaration
Tip revision: 3df4567
pdssolve.hpp
//
// Created by max on 19.08.22.
//

#ifndef PDS_PDSSOLVE_HPP
#define PDS_PDSSOLVE_HPP

#include "pds.hpp"
#include <queue>
#include <concepts>

namespace pds {
template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool exhaustiveSimpleReductions(PdsState& state, F callback = pds::unused) {
    bool anyChanged = false;
    bool changed;
    do {
        changed = false;
        if (state.disableLowDegree()) { callback(state, "low_degree"); changed = true; }
        while (state.collapseLeaves()) { callback(state, "leaves"); changed = true; }
        while (state.collapseDegreeTwo()) { callback(state, "path"); changed = true; }
        if (state.reduceObservedNonZi()) { callback(state, "non_zi"); changed = true; }
        if (state.collapseObservedEdges()) { callback(state, "observed_edges"); changed = true; }
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool dominationReductions(PdsState &state, bool firstRun = true, F callback = unused) {
    bool changed = false;
    if (state.disableObservationNeighborhood()) { callback(state, "observation_neighborhood"); changed = true; }
    if ((firstRun || changed) && state.activateNecessaryNodes()) { callback(state, "necessary_nodes"); changed = true; }
    return changed;
}

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool exhaustiveReductions(PdsState &state, bool firstRun = true, F callback = unused) {
    bool anyChanged = false;
    bool changed;
    do {
        changed = exhaustiveSimpleReductions(state, callback);
        if (firstRun || changed) changed |= dominationReductions(state, firstRun, callback);
        firstRun = false;
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

template<std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)>
bool noNecessaryReductions(PdsState &state, bool firstRun = true, F callback = unused) {
    bool anyChanged = false;
    bool changed;
    do {
        changed = exhaustiveSimpleReductions(state, callback);
        if (firstRun || changed) if(state.disableObservationNeighborhood()) {
            callback(state, "observation_neighborhood");
            changed = true;
        }
        firstRun = false;
        anyChanged |= changed;
    } while (changed);
    return anyChanged;
}

namespace greedy_strategies {
std::optional<PdsState::Vertex> largestObservationNeighborhood(const PdsState &state) {
    using Vertex = PdsState::Vertex;
    std::optional<Vertex> best;
    size_t bestObserved = 0;
    set<Vertex> active;
    for (auto v: state.graph().vertices()) {
        if (state.isActive(v)) { active.insert(v); }
    }
    for (auto v: state.graph().vertices()) {
        if (state.isBlank(v)) {
            size_t numObserved = state.numObserved(); //TODO
            if (!best || bestObserved < numObserved) {
                best = {v};
                bestObserved = numObserved;
            }
        }
    }
    return best;
}

std::optional<PdsState::Vertex> largestDegree(const PdsState &state) {
    using Vertex = PdsState::Vertex;
    std::optional<Vertex> best;
    size_t bestObserved = 0;
    for (auto v: state.graph().vertices()) {
        if (state.isBlank(v)) {
            if (!best || bestObserved < state.graph().degree(v)) {
                best = {v};
                bestObserved = state.graph().degree(v);
            }
        }
    }
    return best;
}

std::optional<PdsState::Vertex> medianDegree(const PdsState &state) {
    using Vertex = PdsState::Vertex;
    std::vector<Vertex> vertices;
    for (auto v: state.graph().vertices()) {
        if (state.isBlank(v)) {
            vertices.push_back(v);
        }
    }
    if (vertices.size() == 0) return {};
    auto deg = [&state](auto v) { return state.graph().degree(v);};
    auto best = vertices.begin() + (vertices.size() + 1) / 2;
    ranges::nth_element(vertices, best, [deg](auto v, auto w) { return deg(v) < deg(w);});
    if (best != vertices.end()) {
        return {*best};
    } else {
        return {};
    }
}
}

template<
        std::invocable<const PdsState&> Strategy = std::optional<PdsState::Vertex>(const PdsState&),
        std::invocable<const PdsState&, const std::string&> F = void(const PdsState&, const std::string&)
>
SolveState solveGreedy(PdsState& state, bool applyReductions = true, Strategy strategy = greedy_strategies::largestObservationNeighborhood, F callback = unused) {
    while (!state.allObserved()) {
        if (applyReductions) {
            exhaustiveReductions(state, true, callback);
        }
        if (state.allObserved()) break;
        auto best = strategy(state);
        if (!best) break;
        state.setActive(*best);
    }
    return SolveState::Heuristic;
}

SolveState fastGreedy(PdsState& state) {
    //auto comp = [&state] (auto v, auto w) { return state.graph().degree(v) < state.graph().degree(w); };
    auto vertices = state.graph().vertices()
            | ranges::views::filter([&state](auto v) { return state.isBlank(v); })
            | ranges::views::transform([&state](auto v) { return std::pair(state.graph().degree(v), v); })
            | ranges::to<std::vector>;
    ranges::make_heap(vertices);
    while (!state.allObserved() && !vertices.empty()) {
        while (!state.graph().hasVertex(vertices.front().second) || !state.isBlank(vertices.front().second)) {
            ranges::pop_heap(vertices);
            vertices.pop_back();
            if (vertices.empty()) break;
        }
        ranges::pop_heap(vertices);
        auto v = vertices.back().second;
        vertices.pop_back();
        state.setActive(v);
        exhaustiveReductions(state);
    }
    if (!state.allObserved()) return SolveState::Infeasible;
    return SolveState::Heuristic;
}

using Bounds = std::pair<size_t, size_t>;
Bounds sensorBounds(const PdsState& state) {
    size_t lower = 0, upper = 0, unobserved = 0;
    for (auto v: state.graph().vertices()) {
        if (state.isActive(v)) {
            lower += 1;
            upper += 1;
        }
        if (!state.isObserved(v)) {
            unobserved += 1;
            if (state.isBlank(v)) {
                upper += 1;
            }
        }
    }
    return {lower + (unobserved > 0), upper + (unobserved > 0)};
}

bool isFeasible(const PdsState& state) {
    auto copy = state;
    for (auto v: state.graph().vertices()) {
        if (!state.isInactive(v)) {
            copy.setActive(v);
        }
    }
    return copy.allObserved();
}

template< std::invocable<const PdsState&> Strategy = std::optional<PdsState::Vertex>(const PdsState&) >
SolveState solveBranching(PdsState &state,
                    bool useReductions,
                    Strategy strategy = greedy_strategies::largestDegree) {
    if (useReductions) {
        exhaustiveReductions(state, true);
    }
    auto heuristic = state;
    fastGreedy(heuristic);
    auto upper = sensorBounds(heuristic).second;
    fmt::print("heuristic result: {}\n", upper);
    size_t lower = 0;
    auto compare = [](const auto& first, const auto& second) { return first.first.first > second.first.first; };
    using Element = std::pair<Bounds, PowerGrid>;
    std::priority_queue<Element, std::vector<Element>, decltype(compare)> queue(compare);
    queue.push({sensorBounds(state), state.graph()});
    size_t explored = 0;
    using namespace std::chrono_literals;
    auto now = []() { return std::chrono::high_resolution_clock::now(); };
    auto printPeriod = 1s;
    auto previousPrint = now();
    while (!queue.empty()) {
        ++explored;
        PdsState top(std::move(queue.top().second));
        auto bounds = queue.top().first;
        queue.pop();
        if (bounds.first > upper) continue;
        lower = bounds.first;
        auto t = now();
        if (t - previousPrint > printPeriod) {
            fmt::print("explored {} nodes\t{}\t{}\t{}\t{}\t{}\n", explored, lower, upper, bounds.first, bounds.second, top.allObserved());
            previousPrint = t;
        }
        upper = std::min(upper, bounds.second);
        if (bounds.first == bounds.second && top.allObserved()) {
            heuristic = top;
            fmt::print("incumbent solution: {}\t{}\n", bounds.first, top.allObserved());
        }
        auto best = strategy(top);
        if (!best) continue;
        auto activated = top;
        activated.setActive(*best);
        top.setInactive(*best);
        if (useReductions) {
            exhaustiveReductions(activated);
            exhaustiveReductions(top);
        }
        auto activatedBounds = sensorBounds(activated);
        auto disabledBounds = sensorBounds(top);
        if (activatedBounds.first < upper) {// && isFeasible(activated)) {// && activatedBounds.first <= activatedBounds.second
            upper = std::min(upper, activatedBounds.second);
            queue.template emplace(activatedBounds, std::move(activated.moveGraph()));
        }
        if (disabledBounds.first < upper) {// && isFeasible(top)) { // && disabledBounds.first <= disabledBounds.second
            upper = std::min(upper, disabledBounds.second);
            queue.emplace(disabledBounds, std::move(top.moveGraph()));
        }
    }
    fmt::print("finished after exploring {} nodes\t{}\t{}\n", explored, lower, upper);
    state = std::move(heuristic);
    fmt::print("solved by branching. result: {}\n", upper);
    return SolveState::Optimal;
}

} //namespace pds

#endif //PDS_PDSSOLVE_HPP

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API