Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 7c3f43a
  • /
  • R
  • /
  • krls.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:678d800eff77fd23782a66c3fec11fb941d5dda8
directory badge Iframe embedding
swh:1:dir:cf1d422da61bf78187f68afdd573452b1cb0bb7c
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
krls.R
krls <-
function(X=NULL,
              y=NULL,
              whichkernel="gauss",
              lambda=NULL,
              sigma=NULL,
              derivative=FALSE,
              print.level=0){
              
      
      # checks
      y <- as.matrix(y)
      X <- as.matrix(X)
      
      if (is.numeric(X)==FALSE){
       stop("X must be numeric")
      }
      if (is.numeric(y)==FALSE){
       stop("y must be numeric")
      }
       if (sum(is.na(X))>0){
       stop("X contains missing data")
      }
      if (sum(is.na(y))>0){
       stop("y contains missing data")
      }
      if (var(y)==0){
       stop("y does not vary")
      }
      n <- nrow(X)
      d <- ncol(X)
      if (n!=nrow(y)){
       stop("nrow(X) not equal to number of elements in y")
      }

      # scale
      X.init <- X
      X.init.sd <- apply(X.init,2,sd)
      y.init <- y
      y.init.sd <- apply(y.init,2,sd)
      y.init.mean <- mean(y.init)
      X <- scale(X,center=TRUE,scale=X.init.sd)    
      y <- scale(y,center=y.init.mean,scale=y.init.sd)
     
      # default sigma to dim of X 
      if(is.null(sigma)) { sigma <- d}
      # kernel matrix
      K <- NULL
      if(whichkernel=="gauss"){ K <- gausskernel(X,sigma=sigma)}
      if(whichkernel=="linear"){K <- tcrossprod(X)}
      if(whichkernel=="poly2"){K <- (tcrossprod(X)+1)^2}
      if(whichkernel=="poly3"){K <- (tcrossprod(X)+1)^3}
      if(whichkernel=="poly4"){K <- (tcrossprod(X)+1)^4}
      if(is.null(K)){stop("No valid Kernel specified")}
      # eigenvalue decomposition
      Eigenobject <- eigen(K,symmetric=TRUE)
      # default lamda is chosen by leave one out optimization 
       if(is.null(lambda)) {
       
       # first try with max eigenvalue (increase interval in case of corner solution at upper bound)
       lowerb  <-  .Machine$double.eps
       upperb <- max(Eigenobject$values)
       if(print.level>0) { cat("Using Leave one out validation to determine lamnda. Search Interval: 0 to",round(upperb,3), "\n")}
        lambda <- optimize(looloss,interval=c(lowerb,upperb),y=y,Eigenobject=Eigenobject)$minimum
        if(lambda >= (upperb - .5)){
         if(print.level>0) { cat("Increasing search window for Lambda that minimizes Loo-Loss \n")}  
        lambda <- optimize(looloss,interval=c(upperb,2*upperb),y=y,Eigenobject=Eigenobject)$minimum
        }
        if(print.level>0) { cat("Lambda that minimizes Loo-Loss is:",round(lambda,5),"\n")}    
       } else {  # check user specified lamnbda
      if (lambda<=0){
       stop("lambda must be positive")
      }
      }
      # solve given LOO optimal or user specified lambda
      out <-  solveforc(y=y,Eigenobject=Eigenobject,lambda=lambda)
      # fitted values
      yfitted <- K%*%out$coeffs
      
      ## var-covar matrix for c
      # sigma squared
       sigmasq <- as.vector((1/n) * crossprod(y-yfitted))
       Gdiag   <-  Eigenobject$values+lambda
       Ginvsq  <-  tcrossprod(Eigenobject$vectors %*% diag(Gdiag^-2,n,n),Eigenobject$vectors)
       vcovmatc <- sigmasq*Ginvsq
      # var-covar for y hats
       vcovmatyhat <- crossprod(K,vcovmatc%*%K) 
            
      # compute derivatives
      derivmat<-NULL
      avgderiv <- derivmat <- varavgderivmat <- NULL
      if(derivative==TRUE){ 
      rows <- cbind(rep(1:nrow(X), each = nrow(X)), 1:nrow(X))
      distances <- X[rows[,1],] - X[ rows[,2],]    # d by n*n matrix of pairwise distances  
      derivmat <- matrix(NA,n,d)
      varavgderivmat <- matrix(NA,1,d)
      for(k in 1:d){       
       if(d==1){
             distk <-  matrix(distances,n,n,byrow=TRUE)
         } else {
             distk <-  matrix(distances[,k],n,n,byrow=TRUE) 
        }
         L <-  distk*K
         # pointwise derivatives
         derivmat[,k] <- (-2/sigma)*L%*%out$coeff
         # variance for average derivative
         varavgderivmat[1,k] <- (1/n^2)*sum((-2/sigma)^2 * crossprod(L,vcovmatc%*%L))     
      }
       # avg derivatives
       avgderiv <- matrix(colMeans(derivmat),nrow=1)
      # get back to scale
      derivmat <- scale(y.init.sd*derivmat,center=FALSE,scale=X.init.sd)
      attr(derivmat,"scaled:scale")<- NULL
      avgderiv <- scale(as.matrix(y.init.sd*avgderiv),center=FALSE,scale=X.init.sd)
      attr(avgderiv,"scaled:scale")<- NULL
      varavgderivmat <- (y.init.sd/X.init.sd)^2*varavgderivmat
      attr(varavgderivmat,"scaled:scale")<- NULL
      }
         
      # get back to scale
      yfitted     <- yfitted*y.init.sd+y.init.mean
      vcov.c      <- (y.init.sd^2)*vcovmatc
      vcov.fitted <- (y.init.sd^2)*vcovmatyhat
      
      # R square
      R2 <- 1-(var(y.init-yfitted)/(y.init.sd^2))
   
      # return
   z <- list(K=K,
             coeffs=out$coeffs,
             Looe=out$Le,
             fitted=yfitted,
             X=X.init,
             y=y.init,
             sigma=sigma,
             lambda=lambda,
             R2 = R2,
             derivatives=derivmat,
             avgderivatives=avgderiv, 
             var.avgderivatives=varavgderivmat,
             vcov.c=vcov.c,
             vcov.fitted=vcov.fitted        
            )
            
            
  class(z) <- "krls"
  return(z)
            
  }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top