from matplotlib import pyplot as plt
import gpflow
import tensorflow as tf
import os
import numpy as np
import cProfile
def outputGraph(model, dirName, fileName):
model.compile()
if not(os.path.isdir(dirName)):
os.mkdir(dirName)
fullFileName = os.path.join(dirName, fileName)
if os.path.isfile(fullFileName):
os.remove(fullFileName)
tf.train.write_graph(model.session.graph_def, dirName+'/', fileName, as_text=False)
# build a very simple data set:
def getData():
rng = np.random.RandomState(1)
N = 30
X = rng.rand(N,1)
Y = np.sin(12*X) + 0.66*np.cos(25*X) + rng.randn(N,1)*0.1 + 3
return X,Y
def plotData(X,Y):
plt.figure()
plt.plot(X, Y, 'kx', mew=2)
def getRegressionModel(X,Y):
#build the GPR object
k = gpflow.kernels.Matern52(1)
meanf = gpflow.mean_functions.Linear(1,0)
m = gpflow.models.GPR(X, Y, k, meanf)
m.likelihood.variance = 0.01
print "Here are the parameters before optimization"
m
return m
def optimizeModel(m):
m.optimize()
print "Here are the parameters after optimization"
m
def plotOptimizationResult(X,Y,m):
#plot!
xx = np.linspace(-0.1, 1.1, 100)[:,None]
mean, var = m.predict_y(xx)
plt.figure()
plt.plot(X, Y, 'kx', mew=2)
plt.plot(xx, mean, 'b', lw=2)
plt.plot(xx, mean + 2*np.sqrt(var), 'b--', xx, mean - 2*np.sqrt(var), 'b--', lw=1.2)
def setModelPriors(m):
#we'll choose rather arbitrary priors.
m.kern.lengthscales.prior = gpflow.priors.Gamma(1., 1.)
m.kern.variance.prior = gpflow.priors.Gamma(1., 1.)
m.likelihood.variance.prior = gpflow.priors.Gamma(1., 1.)
m.mean_function.A.prior = gpflow.priors.Gaussian(0., 10.)
m.mean_function.b.prior = gpflow.priors.Gaussian(0., 10.)
print "model with priors ", m
def getSamples(m):
samples = m.sample(100, epsilon = 0.1)
return samples
def plotSamples(X, Y, m, samples):
xx = np.linspace(-0.1, 1.1, 100)[:,None]
plt.figure()
plt.plot(samples)
f, axs = plt.subplots(1,3, figsize=(12,4), tight_layout=True)
axs[0].plot(samples[:,0], samples[:,1], 'k.', alpha = 0.15)
axs[0].set_xlabel('noise_variance')
axs[0].set_ylabel('signal_variance')
axs[1].plot(samples[:,0], samples[:,2], 'k.', alpha = 0.15)
axs[1].set_xlabel('noise_variance')
axs[1].set_ylabel('lengthscale')
axs[2].plot(samples[:,2], samples[:,1], 'k.', alpha = 0.1)
axs[2].set_xlabel('lengthscale')
axs[2].set_ylabel('signal_variance')
#an attempt to plot the function posterior
#Note that we should really sample the function values here, instead of just using the mean.
#We are under-representing the uncertainty here.
# TODO: get full_covariance of the predictions (predict_f only?)
plt.figure()
for s in samples:
m.set_state(s)
mean, _ = m.predict_y(xx)
plt.plot(xx, mean, 'b', lw=2, alpha = 0.05)
plt.plot(X, Y, 'kx', mew=2)
def showAllPlots():
plt.show()
def runExperiments(plotting=True,outputGraphs=False):
X,Y = getData()
if plotting:
plotData(X,Y)
m = getRegressionModel(X,Y)
if outputGraphs:
modelDir = 'models'
outputGraph(m, modelDir, 'pointHypers')
optimizeModel(m)
if plotting:
plotOptimizationResult(X,Y,m)
setModelPriors(m)
if outputGraphs:
outputGraph(m, modelDir, 'bayesHypers')
samples = getSamples(m)
if plotting:
plotSamples(X, Y, m, samples)
showAllPlots()
if __name__ == '__main__':
runExperiments()
#cProfile.run('runExperiments(plotting=False)')