Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 06eb59a
  • /
  • examples
  • /
  • decomposition
  • /
  • plot_cp_line_search.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:695eb88d3d9119cf187bd7d0d34f189a8a40dfb1
directory badge Iframe embedding
swh:1:dir:754b0cacd2326aa80cb892878771a3847b0ae1a5

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
plot_cp_line_search.py
"""
Using line search with PARAFAC
==============================

Example on how to use :func:`tensorly.decomposition.parafac` with line search to accelerate convergence.
"""
import matplotlib.pyplot as plt

from time import time
import numpy as np
import tensorly as tl
from tensorly.random import random_cp
from tensorly.decomposition import CP, parafac

tol = np.logspace(-1, -9)
err = np.empty_like(tol)
err_ls = np.empty_like(tol)
tt = np.empty_like(tol)
tt_ls = np.empty_like(tol)
tensor = random_cp((10, 10, 10), 3, random_state=1234, full=True)

# Get a high-accuracy decomposition for comparison
fac = parafac(tensor, rank=3, n_iter_max=2000000, tol=1.0e-15, linesearch=True)
err_min = tl.norm(tl.cp_to_tensor(fac) - tensor)

for ii, toll in enumerate(tol):
	# Run PARAFAC decomposition without line search and time
    start = time()
    cp = CP(rank=3, n_iter_max=2000000, tol=toll, linesearch=False)
    fac = cp.fit_transform(tensor)
    tt[ii] = time() - start
    err[ii] = tl.norm(tl.cp_to_tensor(fac) - tensor)

# Run PARAFAC decomposition with line search and time
for ii, toll in enumerate(tol):
    start = time()
    cp = CP(rank=3, n_iter_max=2000000, tol=toll, linesearch=True)
    fac_ls = cp.fit_transform(tensor)
    tt_ls[ii] = time() - start

    # Calculate the error of both decompositions
    err_ls[ii] = tl.norm(tl.cp_to_tensor(fac_ls) - tensor)


fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.loglog(tt, err - err_min, '.', label="No line search")
ax.loglog(tt_ls, err_ls - err_min, '.r', label="Line search")
ax.legend()
ax.set_ylabel("Time")
ax.set_xlabel("Error")

plt.show()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API