swh:1:snp:a568cc5cff39965992895669038ed8c43a59eedd
Tip revision: 2878a3d9f5a3b9b89a0084a897bef3414e9de4a2 authored by nwbarendregt on 03 May 2022, 15:08:29 UTC
Add files via upload
Add files via upload
Tip revision: 2878a3d
Tok_Threshold_Motifs.m
% Tok_Threshold_Motifs.m
% Script used to generate data for Fig. 5B-C in Barendregt et al., 2022.
clear
% Define simulation parameters:
Nt = 15; R_i = -1; tol = 1e-5;
t_d = 0.170; % Slow version of tokens task
% t_d = 0.020; % Fast version of tokens task
c = linspace(0,1); R_c = linspace(0,10);
% Pre-allocate threshold classification matrix:
type = NaN(length(c),length(R_c));
for i = 1:length(c)
for j = 1:length(R_c)
% Calculate normative thresholds using Bellman's equation:
thresh = tok_Bellmans_TL(Nt,t_d,R_c(j),R_i,@(t) c(i),tol);
% Classify threshold motif:
if sum(thresh==0)==length(thresh)
type(i,j) = 1; % Motif i
elseif sum(diff(thresh)<=0)==(length(thresh)-1)
type(i,j) = 2; % Motif ii
elseif sum(diff(find(sign(diff(thresh))==1))==1)==0
type(i,j) = 3; % Motif iii
else
type(i,j) = 4; % Motif iv
end
end
end
% save('Tok_Threshold_Motifs_Slow.mat')