\name{akj} \alias{akj} \title{Density Estimation using Adaptive Kernel method} \description{ Univariate \emph{adaptive} kernel density estimation a la Silverman. As used by Portnoy and Koenker (1989). } \usage{ akj(x, z =, p =, h = -1, alpha = 0.5, kappa = 0.9, iker1 = 0) } \arguments{ \item{x}{points used for centers of kernel assumed to be sorted.} \item{z}{points at which density is calculated; defaults to an equispaced sequence covering the range of x.} \item{p}{vector of probabilities associated with \code{x}s; defaults to 1/n for each x.} \item{h}{initial window size (overall); defaults to Silverman's normal reference.} \item{alpha}{a sensitivity parameter that determines the sensitivity of the local bandwidth to variations in the pilot density; defaults to .5.} \item{kappa}{constant multiplier for initial (default) window width} \item{iker1}{integer kernel indicator: 0 for normal kernel (default) while 1 for Cauchy kernel (\code{\link{dcauchy}}).} } \value{ a \code{\link{list}} structure is with components \item{dens}{the vector of estimated density values \eqn{f(z)}} \item{psi}{a vector of \eqn{\psi=-f'/f} function values.} \item{score}{a vector of score \eqn{\psi' = (f'/f)^2 - f''/f} function values.} \item{h}{same as the input argument h} } \note{ if the \code{score} function values are of interest, the Cauchy kernel may be preferable. } \references{ Portnoy, S and R Koenker, (1989) Adaptive L Estimation of Linear Models; \emph{Annals of Statistics} \bold{17}, 362--81. Silverman, B. (1986) \emph{Density Estimation}, pp 100--104. } \examples{ set.seed(1) x <- c(rnorm(600), 2 + 2*rnorm(400)) xx <- seq(-5, 8, length=200) z <- akj(x, xx) plot(xx, z$dens, ylim=range(0,z$dens), type ="l", col=2) abline(h=0, col="gray", lty=3) plot(xx, z$psi, type ="l", col=2, main = expression(hat(psi(x)))) plot(xx, z$score, type ="l", col=2, main = expression("score " * hat(psi) * "'" * (x))) if(require("nor1mix")) { m3 <- norMix(mu= c(-4, 0, 3), sig2 = c(1/3^2, 1, 2^2), w = c(.1,.5,.4)) plot(m3, p.norm = FALSE) set.seed(11) x <- rnorMix(1000, m3) z2 <- akj(x, xx) lines(xx, z2$dens, col=2) z3 <- akj(x, xx, kappa = 0.5, alpha = 0.88) lines(xx, z3$dens, col=3) } } \keyword{smooth}