Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 698042a
  • /
  • config
  • /
  • non_linear
  • /
  • nest.yaml
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:6c5601ee11082943d2d5043be5aa786b7280aa51
directory badge Iframe embedding
swh:1:dir:742785877c74308678b18a63e0e24e46e2bc161a

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
nest.yaml
# Configuration files that customize the default behaviour of non-linear searches.

# **PyAutoFit** supports the following nested sampling algorithms:

# - Dynesty: https://github.com/joshspeagle/dynesty / https://dynesty.readthedocs.io/en/latest/index.html
# - UltraNest: https://github.com/JohannesBuchner/UltraNest / https://johannesbuchner.github.io/UltraNest/readme.html

# Settings in the [search] and [run] entries are specific to each nested algorithm and should be determined by
# consulting that MCMC method's own readthedocs.

DynestyStatic:
  search:
    bootstrap: null
    bound: multi
    enlarge: null
    facc: 0.2
    first_update: null
    fmove: 0.9
    max_move: 100
    nlive: 50
    sample: auto
    slices: 5
    update_interval: null
    walks: 5
  run:
    dlogz: null
    logl_max: .inf
    maxcall: null
    maxiter: null
    n_effective: null
  initialize:                       # The method used to generate where walkers are initialized in parameter space {prior}.
    method: prior                   # priors: samples are initialized by randomly drawing from each parameter's prior.
  parallel:
    number_of_cores: 1              # The number of cores the search is parallelized over by default, using Python multiprocessing.
    force_x1_cpu: false             # Force Dynesty to not use Python multiprocessing Pool, which can fix issues on certain operating systems.
  printing:
    silence: false                  # If True, the default print output of the non-linear search is silenced and not printed by the Python interpreter.
  prior_passer:
    sigma: 3.0                      # For non-linear search chaining and model prior passing, the sigma value of the inferred model parameter used as the sigma of the passed Gaussian prior.
    use_errors: true                # If True, the errors of the previous model's results are used when passing priors.
    use_widths: true                # If True the width of the model parameters defined in the priors config file are used.
  updates:
    iterations_per_update: 500      # The number of iterations of the non-linear search performed between every 'update', where an update performs tasks like outputting model.results.
    remove_state_files_at_end: true # Whether to remove the savestate of the seach (e.g. the Emcee hdf5 file) at the end to save hard-disk space (results are still stored as PyAutoFit pickles and loadable).
DynestyDynamic:
  search:
    bootstrap: null
    bound: multi
    enlarge: null
    facc: 0.2
    first_update: null
    fmove: 0.9
    max_move: 100
    sample: auto
    slices: 5
    update_interval: null
    walks: 5
  run:
    dlogz_init: 0.01
    logl_max_init: .inf
    maxcall: null
    maxcall_init: null
    maxiter: null
    maxiter_init: null
    n_effective: .inf
    n_effective_init: .inf
    nlive_init: 500
  initialize:                       # The method used to generate where walkers are initialized in parameter space {prior}.
    method: prior                   # priors: samples are initialized by randomly drawing from each parameter's prior.
  parallel:
    number_of_cores: 1              # The number of cores the search is parallelized over by default, using Python multiprocessing.
    force_x1_cpu: false             # Force Dynesty to not use Python multiprocessing Pool, which can fix issues on certain operating systems.
  printing:
    silence: false                  # If True, the default print output of the non-linear search is silenced and not printed by the Python interpreter.
  prior_passer:
    sigma: 3.0                      # For non-linear search chaining and model prior passing, the sigma value of the inferred model parameter used as the sigma of the passed Gaussian prior.
    use_errors: true                # If True, the errors of the previous model's results are used when passing priors.
    use_widths: true                # If True the width of the model parameters defined in the priors config file are used.
  updates:
    iterations_per_update: 500      # The number of iterations of the non-linear search performed between every 'update', where an update performs tasks like outputting model.results.
    remove_state_files_at_end: true # Whether to remove the savestate of the seach (e.g. the Emcee hdf5 file) at the end to save hard-disk space (results are still stored as PyAutoFit pickles and loadable).
UltraNest:
  search:
    draw_multiple: true
    ndraw_max: 65536
    ndraw_min: 128
    num_bootstraps: 30
    num_test_samples: 2
    resume: true
    run_num: null
    storage_backend: hdf5
    vectorized: false
    warmstart_max_tau: -1.0
  run:
    cluster_num_live_points: 40
    dkl: 0.5
    dlogz: 0.5
    frac_remain: 0.01
    insertion_test_window: 10
    insertion_test_zscore_threshold: 2
    lepsilon: 0.001
    log_interval: null
    max_iters: null
    max_ncalls: null
    max_num_improvement_loops: -1.0
    min_ess: 400
    min_num_live_points: 400
    show_status: true
    update_interval_ncall: null
    update_interval_volume_fraction: 0.8
    viz_callback: auto
  stepsampler:
    adaptive_nsteps: false
    log: false
    max_nsteps: 1000
    nsteps: 25
    region_filter: false
    scale: 1.0
    stepsampler_cls: null
  initialize:                       # The method used to generate where walkers are initialized in parameter space {prior}.
    method: prior                   # priors: samples are initialized by randomly drawing from each parameter's prior.
  parallel:
    number_of_cores: 1              # The number of cores the search is parallelized over by default, using Python multiprocessing.
  printing:
    silence: false                  # If True, the default print output of the non-linear search is silenced and not printed by the Python interpreter.
  prior_passer:
    sigma: 3.0                      # For non-linear search chaining and model prior passing, the sigma value of the inferred model parameter used as the sigma of the passed Gaussian prior.
    use_errors: true                # If True, the errors of the previous model's results are used when passing priors.
    use_widths: true                # If True the width of the model parameters defined in the priors config file are used.
  updates:
    iterations_per_update: 500      # The number of iterations of the non-linear search performed between every 'update', where an update performs tasks like outputting model.results.
    remove_state_files_at_end: true # Whether to remove the savestate of the seach (e.g. the Emcee hdf5 file) at the end to save hard-disk space (results are still stored as PyAutoFit pickles and loadable).

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API