
Braidflash: Efficient Braid Simulation for Surface

Code Quantum Error Correction

Ali Javadi-Abhari

January 9, 2018

This document describes the Braidflash software, which is a tool for effi-
cient simulation of braids in the context of surface error correction of quantum
applications. For further explanation and to cite this tool, please refer to the
following publication:

A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown, M. R.
Martonosi, F. T. Chong, “Optimized Surface Code Communication in
Superconducting Quantum Computers,” IEEE/ACM MICRO, Cambridge,
MA, 2017

1 Installation

1. Make sure you have the following dependencies installed:
Clang/Clang++ 3.9 (or later)

Boost 1.61 (or later)

Python 2.7.9 (or later)

Metis 5.1 (or later)

libgmp 6.1 (or later)

libffi 3.2 (or later)

2. Then from a terminal:
cd braidflash

make

The Braidflash simulator is now built and ready to use.

2 Overview

The braidflash software performs a physical-level simulation of the surface code
operations, given information about a quantum application’s logical-level char-
acteristics.

1

2.1 Inputs:

The program requires the following inputs:

• Per-module logical schedule (.lpfs file)

• Coarse-grain module composition (.cg file)

• Module frequencies (.freq file):

These are all easily obtained by running scripts/gen lpfs.sh on a given
.scaffold application.

2.2 Outputs:

The outputs will be mainly reported in two files ending with .kq and .br. The
following will be reported.

• Code distance used

• Num logical qubits

• Num physical qubits

• Num logical gates

• Num physical cycles

• Avg qubit manhattan cost.

• Network utilization factor.

• Histogram of braid lengths.

• Histogram of braid criticalities.

• Visualization of network state during various time slices.

2.3 Options:

• --opt: optimize qubit layout

• --p: physical error rate (10̂-p) [int] (default: 5)

• --yx: stall threshold to switch DOR routing from xy to yx [int] (default:
8)

• --drop: stall threshold to drop entire operation and reinject [int] (default:
20)

• --tech: technology [sup, ion, qdot] (default: sup)

• --pri: braid priority policy [0-6] (default: 0)

2

• --visualize: show network state at each cycle [Warning: only use on
small circuits] (default: none)

• --help: display this help and exit

• --version: output version information and exit

3 Quick Start (Example)

Running a simulation is a two-step process. First, a logical schedule and logical-
level information must be gathered. Then, the simulator can be called.

cd braidflash

Generate logical-level schedules and information

../scripts/gen-lpfs.sh ../Algorithms/Square Root/square root.n10.scaffold

Generate physical-level simulation metrics

./braidflash ./square root.n10/square root.n10.flat100k --p 5 --yx 8

--drop 18 --tech sup --pri 3

The simulation outputs will be written to the directory:
square root.n10/braid simulation.

4 Code Explanation

The source code for the Braidflash simulator is written from scratch in C++ and
Python. It is thoroughly commented and understandable by simple inspection.
Below is a basic sketch of how it works.

The logical schedules are read to create a trace of the program for each leaf
module. The qubit interactions specify an interaction graph which can be used
to optimize qubit placements (this step is done through the arrange.py script).
Similarly, the operation dependencies create a dependency graph which can be
used to create a list of gate dependencies to simulate in order.

Each logical gate is broken down into multiple events. For example, a logical
CNOT constitutes the following events:

1. Event cnot1: opening ancilla nodes/link to initialize

2. Event cnot2: closing ancilla link after 1 cycle

3. Event cnot3: opening route1 from source to destination after 1 cycle

4. Event cnot4: closing route1 after 1 cycle

5. Event cnot5: opening route2 from destination to source after minimum
d-1 cycles

6. Event cnot6: closing route2 after 1 cycle

3

7. Event cnot7: closing ancillas after minimum d-1 cycles

Each gate has its own queue of such events which need to be executed one by
one. Globally, events may be interleaved (in effect, gates are not atomic—this
breakdown of gates allows more efficient use of the lattice).

Two timers are dedicated to ensuring that braids don’t get delayed for very
long times: attempt th yx, attempt th drop. In these cases, the resolve cnot

function is called. This changes the route of the CNOT to (hopefully) allow it
to complete without further delay.

Priority policies are based on how to select a braid for execution among
many eligible ones (those that have dependencies met). These policies are as
follows:

1. Policy0: no priorities. in program order.

2. Policy1: criticality only.

3. Policy2: braid length only. short2long.

4. Policy3: braid length only. long2short.

5. Policy4: close2open only.

6. Policy5: crticiality + short2long + close2open

7. Policy6: criticality + short2long (highest crit) + long2short (lower crit)
+ close2open

5 Visualizing Braids

Tip: For better visualization, you can configure your editor to color .br files,
showing the actual braid occupancies on the network at each timestep. Below
are steps to do this in the Vim editor:

1. Add the following to the your .vimrc file:

autocmd BufRead,BufNewFile *.br set filetype=br

2. Create .vim/syntax/br.vim with the following content:

" Vim syntax file

" Language: Braids on Quantum Surface Code

if exists("b:current_syntax")

finish

endif

syn region braidLink start="-" end="-" keepend

syn region braidLink start="|" end="|" keepend

4

syn region braidBusy start="(*" end=")" keepend

syn region braidQbit start="Q" end="\t" keepend

syn region braidClock start="CLOCK" end="\n" keepend

let b:current_syntax = "br"

hi def link braidLink Comment

hi def link braidBusy String

hi def link braidClock Label

hi def link braidQbit Type

}

Below is a sample screenshot to illustrate:

Figure 1: Visualization of braid occupancies on the network at a given timestep.
Green (Qxx) indicates the locations of logical qubits; each logical qubit is im-
plicitly a double hole. White numbers are network routers (qubit corners) and
blue lines are network links. Red asterisks indicate occupied links and nodes,
thus the path of a braid.

5

