# Copyright 2017 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import numpy as np from numpy.testing import assert_array_almost_equal from gpflow import misc from gpflow.test_util import GPflowTestCase class TestVecToTri(GPflowTestCase): def reference_inverse(self, matrices): # This is the inverse operation of the vec_to_tri op being tested. D, N, _ = matrices.shape M = (N * (N + 1)) // 2 tril_indices = np.tril_indices(N) output = np.zeros((D, M)) for vector_index in range(D): matrix = matrices[vector_index, :] output[vector_index, :] = matrix[tril_indices] return output def get_example_matrices(self, D, N ): rng = np.random.RandomState(1) random_matrices = rng.randn(D, N, N) for matrix_index in range(D): for row_index in range(N): for col_index in range(N): if col_index > row_index: random_matrices[matrix_index, row_index, col_index] = 0. return random_matrices def test_basic_functionality(self): with self.test_context() as sess: N = 3 D = 3 reference_matrices = self.get_example_matrices(D, N) input_vector_tensor = tf.constant(self.reference_inverse(reference_matrices)) test_matrices_tensor = misc.vec_to_tri(input_vector_tensor, N) test_matrices = sess.run(test_matrices_tensor) assert_array_almost_equal(reference_matrices, test_matrices) def test_differentiable(self): with self.test_context() as sess: N = 3 D = 3 reference_matrices = self.get_example_matrices(D, N) input_vector_array = self.reference_inverse(reference_matrices) input_vector_tensor = tf.constant(input_vector_array) test_matrices_tensor = misc.vec_to_tri(input_vector_tensor, N) reduced_sum = tf.reduce_sum(test_matrices_tensor) gradient = tf.gradients(reduced_sum, input_vector_tensor)[0] reference_gradient = np.ones_like(input_vector_array) test_gradient = sess.run(gradient) assert_array_almost_equal(reference_gradient, test_gradient) if __name__ == "__main__": tf.test.main()