C devivatives of p(t-1,t-2|j), i.e. prob{Y(t-1)=1|y(t-2)=j}
C wr to theta(t-1), theta(t-2), psi1
C t=3
subroutine deriv1(theta,psi1,psi2,n,t,j,der)
implicit double precision (a-h,o-z)
integer t,j,j1
dimension theta(n),der(5)
th1 = theta(t)
th2 = theta(t-1)
ps1 = psi1-1
ps2 = psi2-1
if(dabs(ps1) .gt. 1.0e-6) then
j1 = 2*j-1
delta=dsqrt(1+ps1*(psi1*(th1-th2)**2-(th1+th2)**2+2*(th1+th2)))
dth=0
dth1=ps1*(psi1*(th1-th2)-(th1+th2)+1)/delta
dth2=ps1*(-psi1*(th1-th2)-(th1+th2)+1)/delta
dpsi1=((2*psi1-1)*(th1-th2)**2-(th1+th2)**2+2*(th1+th2))/
* (2*delta)
dpsi2=0
A=(2*ps1*(1-j+j1*th2))
B=(1-delta+ps1*th2)*j1+th1*ps1
dpth=0
dpth1=(-j1*dth1+ps1)/A
dpth2=(j1*(ps1-dth2)*A-2*ps1*j1*B)/A**2
dppsi1=((j1*(-dpsi1+th2)+th1)*A-2*B*(1-j+j1*th2))/A**2
dppsi2=0
der(1)=dpth
der(2)=dpth1
der(3)=dpth2
der(4)=dppsi1
der(5)=dppsi2
else
der(1)=0
der(2)=1
der(3)=0
der(4)=(th2-j)*(th1**2-th1)
der(5)=0
end if
return
end