C devivatives of p(t-1,t-2|j), i.e. prob{Y(t-1)=1|y(t-2)=j} C wr to theta(t-1), theta(t-2), psi1 C t=3 subroutine deriv1(theta,psi1,psi2,n,t,j,der) implicit double precision (a-h,o-z) integer t,j,j1 dimension theta(n),der(5) th1 = theta(t) th2 = theta(t-1) ps1 = psi1-1 ps2 = psi2-1 if(dabs(ps1) .gt. 1.0e-6) then j1 = 2*j-1 delta=dsqrt(1+ps1*(psi1*(th1-th2)**2-(th1+th2)**2+2*(th1+th2))) dth=0 dth1=ps1*(psi1*(th1-th2)-(th1+th2)+1)/delta dth2=ps1*(-psi1*(th1-th2)-(th1+th2)+1)/delta dpsi1=((2*psi1-1)*(th1-th2)**2-(th1+th2)**2+2*(th1+th2))/ * (2*delta) dpsi2=0 A=(2*ps1*(1-j+j1*th2)) B=(1-delta+ps1*th2)*j1+th1*ps1 dpth=0 dpth1=(-j1*dth1+ps1)/A dpth2=(j1*(ps1-dth2)*A-2*ps1*j1*B)/A**2 dppsi1=((j1*(-dpsi1+th2)+th1)*A-2*B*(1-j+j1*th2))/A**2 dppsi2=0 der(1)=dpth der(2)=dpth1 der(3)=dpth2 der(4)=dppsi1 der(5)=dppsi2 else der(1)=0 der(2)=1 der(3)=0 der(4)=(th2-j)*(th1**2-th1) der(5)=0 end if return end