Raw File
SingleCurve.cpp
// Geometric Tools, LLC
// Copyright (c) 1998-2012
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2010/10/02)


#include "SingleCurve.h"
#include "Integrate1.h"

namespace NURBS
{
//----------------------------------------------------------------------------
template <typename Real>
SingleCurve<Real>::SingleCurve (Real tmin, Real tmax) : Curve<Real>(tmin, tmax)
{
}
//----------------------------------------------------------------------------
template <typename Real>
Real SingleCurve<Real>::GetSpeedWithData (Real t, void* data)
{
    return ((Curve<Real>*)data)->GetSpeed(t);
}
//----------------------------------------------------------------------------
template <typename Real>
Real SingleCurve<Real>::GetLength (Real t0, Real t1)
{
    assertion(mTMin <= t0 && t0 <= mTMax, "Invalid input\n");
    assertion(mTMin <= t1 && t1 <= mTMax, "Invalid input\n");
    assertion(t0 <= t1, "Invalid input\n");

    return Integrate1<Real>::RombergIntegral(RombergIntegralOrder, t0, t1, GetSpeedWithData, (void*)this);
}
//----------------------------------------------------------------------------
template <typename Real>
Real SingleCurve<Real>::GetTime (Real length, int iterations, Real tolerance)
{
    if (length <= (Real)0)
    {
        return mTMin;
    }

	Real totalLen = GetTotalLength();

    if (length >= totalLen)
    {
        return mTMax;
    }

    // If L(t) is the length function for t in [tmin,tmax], the derivative is
    // L'(t) = |x'(t)| >= 0 (the magnitude of speed).  Therefore, L(t) is a
    // nondecreasing function (and it is assumed that x'(t) is zero only at
    // isolated points; that is, no degenerate curves allowed).  The second
    // derivative is L"(t).  If L"(t) >= 0 for all t, L(t) is a convex
    // function and Newton's method for root finding is guaranteed to
    // converge.  However, L"(t) can be negative, which can lead to Newton
    // iterates outside the domain [tmin,tmax].  The algorithm here avoids
    // this problem by using a hybrid of Newton's method and bisection.

    // Initial guess for Newton's method.
    Real ratio = length/totalLen;
    Real oneMinusRatio = (Real)1 - ratio;
    Real t = oneMinusRatio*mTMin + ratio*mTMax;

    // Initial root-bounding interval for bisection.
    Real lower = mTMin, upper = mTMax;

    for (int i = 0; i < iterations; ++i)
    {
        Real difference = GetLength(mTMin, t) - length;
        if (abs(difference) < tolerance)
        {
            // |L(t)-length| is close enough to zero, report t as the time
            // at which 'length' is attained.
            return t;
        }

        // Generate a candidate for Newton's method.
        Real tCandidate = t - difference/GetSpeed(t);

        // Update the root-bounding interval and test for containment of the
        // candidate.
        if (difference > (Real)0)
        {
            upper = t;
            if (tCandidate <= lower)
            {
                // Candidate is outside the root-bounding interval.  Use
                // bisection instead.
                t = ((Real)0.5)*(upper + lower);
            }
            else
            {
                // There is no need to compare to 'upper' because the tangent
                // line has positive slope, guaranteeing that the t-axis
                // intercept is smaller than 'upper'.
                t = tCandidate;
            }
        }
        else
        {
            lower = t;
            if (tCandidate >= upper)
            {
                // Candidate is outside the root-bounding interval.  Use
                // bisection instead.
                t = ((Real)0.5)*(upper + lower);
            }
            else
            {
                // There is no need to compare to 'lower' because the tangent
                // line has positive slope, guaranteeing that the t-axis
                // intercept is larger than 'lower'.
                t = tCandidate;
            }
        }
    }

    // A root was not found according to the specified number of iterations
    // and tolerance.  You might want to increase iterations or tolerance or
    // integration accuracy.  However, in this application it is likely that
    // the time values are oscillating, due to the limited numerical
    // precision of 32-bit floats.  It is safe to use the last computed time.
    return t;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
//template
//class SingleCurve<float>;

template
class SingleCurve<double>;
//----------------------------------------------------------------------------
}
back to top