# Data imputation using Determinantal Point Process (DPP) - based methods Please contact [Philip Teare](mailto:philip.teare@astrazeneca.com) with any questions about this repo. This work presents an implementation of the models presented in the "[Improved clinical data imputation via classical and quantum determinantal point processes](https://arxiv.org/abs/2303.17893)" paper ## Prerequisites Python 3.9 ## Usage ```python from models.imputers import DPPMissForest ddpp_mf = DPPMissForest(batch_size=100, max_iter=5, n_estimators=10) X_imputed = ddpp_mf.fit_transform(X_missing) ``` ## License [MIT](https://choosealicense.com/licenses/mit/)