cwi.R
``````#' Curve-wise Intervals (CWI)
#'
#' Compute the **Curve-Wise Interval (CWI)** of posterior distributions using \code{ggdist::curve_interval()}. These are particularly useful for visualisation of model's predictions.
#'
#' @inheritParams hdi
#' @inherit ci return
#' @inherit hdi details
#' @inherit hdi seealso
#' @family ci
#'
#' @examples
#' library(bayestestR)
#'
#' if (require("ggplot2") && require("rstanarm") && require("ggdist")) {
#'
#' # Generate data =============================================
#' k = 11 # number of curves (iterations)
#' n = 201 # number of rows
#' data <- data.frame(x = seq(-15,15,length.out = n))
#'
#' # Simulate iterations as new columns
#' for(i in 1:k) {
#'  data[paste0("iter_", i)] <- dnorm(data\$x, seq(-5,5, length.out = k)[i], 3)
#' }
#'
#' # Note: first, we need to transpose the data to have iters as rows
#' iters <- datawizard::data_transpose(data[paste0("iter_", 1:k)])
#'
#' # Compute Median
#' data\$Median <- point_estimate(iters)[["Median"]]
#'
#' # Compute Credible Intervals ================================
#'
#' # Compute ETI (default type of CI)
#' data[c("ETI_low", "ETI_high")] <- eti(iters, ci = 0.5)[c("CI_low", "CI_high")]
#'
#' # Compute CWI
#' # ggdist::curve_interval(reshape_iterations(data), iter_value .width = c(.5))
#'
#' # Visualization =============================================
#' ggplot(data, aes(x = x, y = Median)) +
#'  geom_ribbon(aes(ymin = ETI_low, ymax = ETI_high), fill = "red", alpha = 0.3) +
#'  geom_line(size = 1) +
#'  geom_line(data = reshape_iterations(data),
#'            aes(y = iter_value, group = iter_group),
#'            alpha = 0.3)
#' }
#'
#' @export
cwi <- function(x, ...) {
UseMethod("cwi")
}

#' @rdname cwi
#' @export
cwi.data.frame <- function(x, ci = 0.95, ...) {
insight::check_if_installed("ggdist")

print("Comming soon!")
}``````