\name{bjtest1d} \alias{bjtest1d} \title{Test the Buckley-James estimator by Empirical Likelihood, 1-dim only} \usage{ bjtest1d(y, d, x, beta) } \arguments{ \item{y}{a vector of length N, containing the censored responses.} \item{d}{a vector of either 1's or 0's. d=1 means y is uncensored. d=0 means y is right censored. } \item{x}{a vector of length N, covariate.} \item{beta}{a number. the regression coefficient to be tested in the model y = x beta + epsilon } } \description{ Use the empirical likelihood ratio and Wilks theorem to test if the regression coefficient is equal to beta. The log empirical likelihood been maximized is \deqn{ \sum_{d=1} \log \Delta F(e_i) + \sum_{d=0} \log [1-F(e_i)] .} } \details{ In the above likelihood, \eqn{ e_i = y_i - x * beta } is the residuals. } \value{ A list with the following components: \item{"-2LLR"}{the -2 loglikelihood ratio; have approximate chi square distribution under \eqn{H_o}.} \item{logel2}{the log empirical likelihood, under estimating equation.} \item{logel}{the log empirical likelihood of the Kaplan-Meier of e's.} \item{prob}{the probabilities that max the empirical likelihood under estimating equation constraint.} } \references{ Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, \bold{66} 429-36. Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. \bold{18} 90-120. } \author{Mai Zhou.} \examples{ xx <- c(28,-44,29,30,26,27,22,23,33,16,24,29,24,40,21,31,34,-2,25,19) } \keyword{nonparametric} \keyword{htest}