/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sw=4 et tw=99: * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998-2011 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "frontend/ParseNode.h" #include "jsscriptinlines.h" #include "frontend/ParseMaps-inl.h" #include "frontend/ParseNode-inl.h" using namespace js; /* * Asserts to verify assumptions behind pn_ macros. */ #define pn_offsetof(m) offsetof(ParseNode, m) JS_STATIC_ASSERT(pn_offsetof(pn_link) == pn_offsetof(dn_uses)); #undef pn_offsetof void ParseNode::become(ParseNode *pn2) { JS_ASSERT(!pn_defn); JS_ASSERT(!pn2->isDefn()); JS_ASSERT(!pn_used); if (pn2->isUsed()) { ParseNode **pnup = &pn2->pn_lexdef->dn_uses; while (*pnup != pn2) pnup = &(*pnup)->pn_link; *pnup = this; pn_link = pn2->pn_link; pn_used = true; pn2->pn_link = NULL; pn2->pn_used = false; } pn_type = pn2->pn_type; pn_op = pn2->pn_op; pn_arity = pn2->pn_arity; pn_parens = pn2->pn_parens; pn_u = pn2->pn_u; /* * If any pointers are pointing to pn2, change them to point to this * instead, since pn2 will be cleared and probably recycled. */ if (this->isKind(PNK_FUNCTION) && isArity(PN_FUNC)) { /* Function node: fix up the pn_funbox->node back-pointer. */ JS_ASSERT(pn_funbox->node == pn2); pn_funbox->node = this; } else if (pn_arity == PN_LIST && !pn_head) { /* Empty list: fix up the pn_tail pointer. */ JS_ASSERT(pn_count == 0); JS_ASSERT(pn_tail == &pn2->pn_head); pn_tail = &pn_head; } pn2->clear(); } void ParseNode::clear() { pn_type = PNK_LIMIT; setOp(JSOP_NOP); pn_used = pn_defn = false; pn_arity = PN_NULLARY; pn_parens = false; } bool FunctionBox::joinable() const { return function()->isNullClosure() && (tcflags & (TCF_FUN_USES_ARGUMENTS | TCF_FUN_USES_OWN_NAME | TCF_COMPILE_N_GO)) == TCF_COMPILE_N_GO; } bool FunctionBox::inAnyDynamicScope() const { for (const FunctionBox *funbox = this; funbox; funbox = funbox->parent) { if (funbox->tcflags & (TCF_IN_WITH | TCF_FUN_EXTENSIBLE_SCOPE)) return true; } return false; } bool FunctionBox::scopeIsExtensible() const { return tcflags & TCF_FUN_EXTENSIBLE_SCOPE; } /* Add |node| to |parser|'s free node list. */ void ParseNodeAllocator::freeNode(ParseNode *pn) { /* Catch back-to-back dup recycles. */ JS_ASSERT(pn != freelist); /* * It's too hard to clear these nodes from the AtomDefnMaps, etc. that * hold references to them, so we never free them. It's our caller's job to * recognize and process these, since their children do need to be dealt * with. */ JS_ASSERT(!pn->isUsed()); JS_ASSERT(!pn->isDefn()); if (pn->isArity(PN_NAMESET) && pn->pn_names.hasMap()) pn->pn_names.releaseMap(cx); #ifdef DEBUG /* Poison the node, to catch attempts to use it without initializing it. */ memset(pn, 0xab, sizeof(*pn)); #endif pn->pn_next = freelist; freelist = pn; } /* * A work pool of ParseNodes. The work pool is a stack, chained together * by nodes' pn_next fields. We use this to avoid creating deep C++ stacks * when recycling deep parse trees. * * Since parse nodes are probably allocated in something close to the order * they appear in a depth-first traversal of the tree, making the work pool * a stack should give us pretty good locality. */ class NodeStack { public: NodeStack() : top(NULL) { } bool empty() { return top == NULL; } void push(ParseNode *pn) { pn->pn_next = top; top = pn; } void pushUnlessNull(ParseNode *pn) { if (pn) push(pn); } /* Push the children of the PN_LIST node |pn| on the stack. */ void pushList(ParseNode *pn) { /* This clobbers pn->pn_head if the list is empty; should be okay. */ *pn->pn_tail = top; top = pn->pn_head; } ParseNode *pop() { JS_ASSERT(!empty()); ParseNode *hold = top; /* my kingdom for a prog1 */ top = top->pn_next; return hold; } private: ParseNode *top; }; /* * Push the children of |pn| on |stack|. Return true if |pn| itself could be * safely recycled, or false if it must be cleaned later (pn_used and pn_defn * nodes, and all function nodes; see comments for CleanFunctionList in * SemanticAnalysis.cpp). Some callers want to free |pn|; others * (js::ParseNodeAllocator::prepareNodeForMutation) don't care about |pn|, and * just need to take care of its children. */ static bool PushNodeChildren(ParseNode *pn, NodeStack *stack) { switch (pn->getArity()) { case PN_FUNC: /* * Function nodes are linked into the function box tree, and may appear * on method lists. Both of those lists are singly-linked, so trying to * update them now could result in quadratic behavior when recycling * trees containing many functions; and the lists can be very long. So * we put off cleaning the lists up until just before function * analysis, when we call CleanFunctionList. * * In fact, we can't recycle the parse node yet, either: it may appear * on a method list, and reusing the node would corrupt that. Instead, * we clear its pn_funbox pointer to mark it as deleted; * CleanFunctionList recycles it as well. * * We do recycle the nodes around it, though, so we must clear pointers * to them to avoid leaving dangling references where someone can find * them. */ pn->pn_funbox = NULL; stack->pushUnlessNull(pn->pn_body); pn->pn_body = NULL; return false; case PN_NAME: /* * Because used/defn nodes appear in AtomDefnMaps and elsewhere, we * don't recycle them. (We'll recover their storage when we free the * temporary arena.) However, we do recycle the nodes around them, so * clean up the pointers to avoid dangling references. The top-level * decls table carries references to them that later iterations through * the compileScript loop may find, so they need to be neat. * * pn_expr and pn_lexdef share storage; the latter isn't an owning * reference. */ if (!pn->isUsed()) { stack->pushUnlessNull(pn->pn_expr); pn->pn_expr = NULL; } return !pn->isUsed() && !pn->isDefn(); case PN_LIST: stack->pushList(pn); break; case PN_TERNARY: stack->pushUnlessNull(pn->pn_kid1); stack->pushUnlessNull(pn->pn_kid2); stack->pushUnlessNull(pn->pn_kid3); break; case PN_BINARY: if (pn->pn_left != pn->pn_right) stack->pushUnlessNull(pn->pn_left); stack->pushUnlessNull(pn->pn_right); break; case PN_UNARY: stack->pushUnlessNull(pn->pn_kid); break; case PN_NULLARY: /* * E4X function namespace nodes are PN_NULLARY, but can appear on use * lists. */ return !pn->isUsed() && !pn->isDefn(); default: ; } return true; } /* * Prepare |pn| to be mutated in place into a new kind of node. Recycle all * |pn|'s recyclable children (but not |pn| itself!), and disconnect it from * metadata structures (the function box tree). */ void ParseNodeAllocator::prepareNodeForMutation(ParseNode *pn) { if (!pn->isArity(PN_NULLARY)) { if (pn->isArity(PN_FUNC)) { /* * Since this node could be turned into anything, we can't * ensure it won't be subsequently recycled, so we must * disconnect it from the funbox tree entirely. * * Note that pn_funbox may legitimately be NULL. functionDef * applies MakeDefIntoUse to definition nodes, which can come * from prior iterations of the big loop in compileScript. In * such cases, the defn nodes have been visited by the recycler * (but not actually recycled!), and their funbox pointers * cleared. But it's fine to mutate them into uses of some new * definition. */ if (pn->pn_funbox) pn->pn_funbox->node = NULL; } /* Put |pn|'s children (but not |pn| itself) on a work stack. */ NodeStack stack; PushNodeChildren(pn, &stack); /* * For each node on the work stack, push its children on the work stack, * and free the node if we can. */ while (!stack.empty()) { pn = stack.pop(); if (PushNodeChildren(pn, &stack)) freeNode(pn); } } } /* * Return the nodes in the subtree |pn| to the parser's free node list, for * reallocation. * * Note that all functions in |pn| that are not enclosed by other functions * in |pn| must be direct children of |tc|, because we only clean up |tc|'s * function and method lists. You must not reach into a function and * recycle some part of it (unless you've updated |tc|->functionList, the * way js_FoldConstants does). */ ParseNode * ParseNodeAllocator::freeTree(ParseNode *pn) { if (!pn) return NULL; ParseNode *savedNext = pn->pn_next; NodeStack stack; for (;;) { if (PushNodeChildren(pn, &stack)) freeNode(pn); if (stack.empty()) break; pn = stack.pop(); } return savedNext; } /* * Allocate a ParseNode from parser's node freelist or, failing that, from * cx's temporary arena. */ void * ParseNodeAllocator::allocNode() { if (ParseNode *pn = freelist) { freelist = pn->pn_next; return pn; } void *p = cx->tempLifoAlloc().alloc(sizeof (ParseNode)); if (!p) js_ReportOutOfMemory(cx); return p; } /* used only by static create methods of subclasses */ ParseNode * ParseNode::create(ParseNodeKind kind, ParseNodeArity arity, TreeContext *tc) { Parser *parser = tc->parser; const Token &tok = parser->tokenStream.currentToken(); return parser->new_(kind, JSOP_NOP, arity, tok.pos); } ParseNode * ParseNode::append(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right) { if (!left || !right) return NULL; JS_ASSERT(left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC)); if (left->pn_arity != PN_LIST) { ParseNode *pn1 = left->pn_left, *pn2 = left->pn_right; left->setArity(PN_LIST); left->pn_parens = false; left->initList(pn1); left->append(pn2); if (kind == PNK_ADD) { if (pn1->isKind(PNK_STRING)) left->pn_xflags |= PNX_STRCAT; else if (!pn1->isKind(PNK_NUMBER)) left->pn_xflags |= PNX_CANTFOLD; if (pn2->isKind(PNK_STRING)) left->pn_xflags |= PNX_STRCAT; else if (!pn2->isKind(PNK_NUMBER)) left->pn_xflags |= PNX_CANTFOLD; } } left->append(right); left->pn_pos.end = right->pn_pos.end; if (kind == PNK_ADD) { if (right->isKind(PNK_STRING)) left->pn_xflags |= PNX_STRCAT; else if (!right->isKind(PNK_NUMBER)) left->pn_xflags |= PNX_CANTFOLD; } return left; } ParseNode * ParseNode::newBinaryOrAppend(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right, TreeContext *tc) { if (!left || !right) return NULL; /* * Flatten a left-associative (left-heavy) tree of a given operator into * a list to reduce js::FoldConstants and js::frontend::EmitTree recursion. */ if (left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC)) return append(kind, op, left, right); /* * Fold constant addition immediately, to conserve node space and, what's * more, so js::FoldConstants never sees mixed addition and concatenation * operations with more than one leading non-string operand in a PN_LIST * generated for expressions such as 1 + 2 + "pt" (which should evaluate * to "3pt", not "12pt"). */ if (kind == PNK_ADD && left->isKind(PNK_NUMBER) && right->isKind(PNK_NUMBER) && tc->parser->foldConstants) { left->pn_dval += right->pn_dval; left->pn_pos.end = right->pn_pos.end; tc->freeTree(right); return left; } return tc->parser->new_(kind, op, left, right); } NameNode * NameNode::create(ParseNodeKind kind, JSAtom *atom, TreeContext *tc) { ParseNode *pn = ParseNode::create(kind, PN_NAME, tc); if (pn) { pn->pn_atom = atom; ((NameNode *)pn)->initCommon(tc); } return (NameNode *)pn; } const char js_argument_str[] = "argument"; const char js_variable_str[] = "variable"; const char js_unknown_str[] = "unknown"; const char * Definition::kindString(Kind kind) { static const char *table[] = { js_var_str, js_const_str, js_let_str, js_function_str, js_argument_str, js_unknown_str }; JS_ASSERT(unsigned(kind) <= unsigned(ARG)); return table[kind]; } #if JS_HAS_DESTRUCTURING /* * This function assumes the cloned tree is for use in the same statement and * binding context as the original tree. */ static ParseNode * CloneParseTree(ParseNode *opn, TreeContext *tc) { JS_CHECK_RECURSION(tc->parser->context, return NULL); ParseNode *pn = tc->parser->new_(opn->getKind(), opn->getOp(), opn->getArity(), opn->pn_pos); if (!pn) return NULL; pn->setInParens(opn->isInParens()); pn->setDefn(opn->isDefn()); pn->setUsed(opn->isUsed()); switch (pn->getArity()) { #define NULLCHECK(e) JS_BEGIN_MACRO if (!(e)) return NULL; JS_END_MACRO case PN_FUNC: NULLCHECK(pn->pn_funbox = tc->parser->newFunctionBox(opn->pn_funbox->object, pn, tc)); NULLCHECK(pn->pn_body = CloneParseTree(opn->pn_body, tc)); pn->pn_cookie = opn->pn_cookie; pn->pn_dflags = opn->pn_dflags; pn->pn_blockid = opn->pn_blockid; break; case PN_LIST: pn->makeEmpty(); for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) { ParseNode *pn2; NULLCHECK(pn2 = CloneParseTree(opn2, tc)); pn->append(pn2); } pn->pn_xflags = opn->pn_xflags; break; case PN_TERNARY: NULLCHECK(pn->pn_kid1 = CloneParseTree(opn->pn_kid1, tc)); NULLCHECK(pn->pn_kid2 = CloneParseTree(opn->pn_kid2, tc)); NULLCHECK(pn->pn_kid3 = CloneParseTree(opn->pn_kid3, tc)); break; case PN_BINARY: NULLCHECK(pn->pn_left = CloneParseTree(opn->pn_left, tc)); if (opn->pn_right != opn->pn_left) NULLCHECK(pn->pn_right = CloneParseTree(opn->pn_right, tc)); else pn->pn_right = pn->pn_left; pn->pn_pval = opn->pn_pval; pn->pn_iflags = opn->pn_iflags; break; case PN_UNARY: NULLCHECK(pn->pn_kid = CloneParseTree(opn->pn_kid, tc)); pn->pn_num = opn->pn_num; pn->pn_hidden = opn->pn_hidden; break; case PN_NAME: // PN_NAME could mean several arms in pn_u, so copy the whole thing. pn->pn_u = opn->pn_u; if (opn->isUsed()) { /* * The old name is a use of its pn_lexdef. Make the clone also be a * use of that definition. */ Definition *dn = pn->pn_lexdef; pn->pn_link = dn->dn_uses; dn->dn_uses = pn; } else if (opn->pn_expr) { NULLCHECK(pn->pn_expr = CloneParseTree(opn->pn_expr, tc)); /* * If the old name is a definition, the new one has pn_defn set. * Make the old name a use of the new node. */ if (opn->isDefn()) { opn->setDefn(false); LinkUseToDef(opn, (Definition *) pn, tc); } } break; case PN_NAMESET: pn->pn_names = opn->pn_names; NULLCHECK(pn->pn_tree = CloneParseTree(opn->pn_tree, tc)); break; case PN_NULLARY: // Even PN_NULLARY may have data (xmlpi for E4X -- what a botch). pn->pn_u = opn->pn_u; break; #undef NULLCHECK } return pn; } #endif /* JS_HAS_DESTRUCTURING */ /* * Used by Parser::forStatement and comprehensionTail to clone the TARGET in * for (var/const/let TARGET in EXPR) * * opn must be the pn_head of a node produced by Parser::variables, so its form * is known to be LHS = NAME | [LHS] | {id:LHS}. * * The cloned tree is for use only in the same statement and binding context as * the original tree. */ ParseNode * js::CloneLeftHandSide(ParseNode *opn, TreeContext *tc) { ParseNode *pn = tc->parser->new_(opn->getKind(), opn->getOp(), opn->getArity(), opn->pn_pos); if (!pn) return NULL; pn->setInParens(opn->isInParens()); pn->setDefn(opn->isDefn()); pn->setUsed(opn->isUsed()); #if JS_HAS_DESTRUCTURING if (opn->isArity(PN_LIST)) { JS_ASSERT(opn->isKind(PNK_RB) || opn->isKind(PNK_RC)); pn->makeEmpty(); for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) { ParseNode *pn2; if (opn->isKind(PNK_RC)) { JS_ASSERT(opn2->isArity(PN_BINARY)); JS_ASSERT(opn2->isKind(PNK_COLON)); ParseNode *tag = CloneParseTree(opn2->pn_left, tc); if (!tag) return NULL; ParseNode *target = CloneLeftHandSide(opn2->pn_right, tc); if (!target) return NULL; pn2 = tc->parser->new_(PNK_COLON, JSOP_INITPROP, opn2->pn_pos, tag, target); } else if (opn2->isArity(PN_NULLARY)) { JS_ASSERT(opn2->isKind(PNK_COMMA)); pn2 = CloneParseTree(opn2, tc); } else { pn2 = CloneLeftHandSide(opn2, tc); } if (!pn2) return NULL; pn->append(pn2); } pn->pn_xflags = opn->pn_xflags; return pn; } #endif JS_ASSERT(opn->isArity(PN_NAME)); JS_ASSERT(opn->isKind(PNK_NAME)); /* If opn is a definition or use, make pn a use. */ pn->pn_u.name = opn->pn_u.name; pn->setOp(JSOP_SETNAME); if (opn->isUsed()) { Definition *dn = pn->pn_lexdef; pn->pn_link = dn->dn_uses; dn->dn_uses = pn; } else { pn->pn_expr = NULL; if (opn->isDefn()) { /* We copied some definition-specific state into pn. Clear it out. */ pn->pn_cookie.makeFree(); pn->pn_dflags &= ~PND_BOUND; pn->setDefn(false); LinkUseToDef(pn, (Definition *) opn, tc); } } return pn; }