Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://bitbucket.org/NetaRS/sched_analytics
08 February 2023, 11:25:08 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    No releases to show
  • ba2af62
  • /
  • compute_tp.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:743196608b6364a6e42708be8d278c8e957bda27
origin badgedirectory badge Iframe embedding
swh:1:dir:ba2af62f8b1e8f483cb493908b711f9de4dbf488
origin badgerevision badge
swh:1:rev:ed1f2acca39de9eb5f34a6cb5b0c8db1492f74f2
origin badgesnapshot badge
swh:1:snp:36f6bbe0f26fc27286535954004e9fae1c8c82d7

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: ed1f2acca39de9eb5f34a6cb5b0c8db1492f74f2 authored by NetaRS on 12 December 2020, 09:53:39 UTC
bounded traffic distributed
Tip revision: ed1f2ac
compute_tp.py
import sys
from os import path
import json
import argparse
from matrices import MatrixList
from mwm import DictList

# Compute the throughput based on traffic files (in milisecond representations)
# and maximum weight matching of different granularities and timing

# Let MWM(t1,t2) be the maximum weight matching obtained by looking at all
# traffic in interval [t1,t2]

# argv[1] is the algorithm we are using:
# + offline_milisecond - compute throuput for t based on MWM(t,t)
# + online_milisecond - compute throughput for t based on MWM(t-1,t-1)

# Next options used frame sizes given in argv[2]: (e.g., 100 milisecond)
# For time t and frame size f, let start_frame be the first time-slot of
# the frame containing t.
# + epoch_milisecond -  througput for t based on MWM(start_frame-1,start_frame-1)
# + offline_epoch -  througput for t based on MWM(start_frame,start_frame+f-1)
# + online_epoch -  througput for t based on MWM(start_frame-f,start_frame-1)



# The script will print the aggregated total througput of 3 seconds on
# all racks, and will print to file the vector of per-milisecond total throughput


def get_new_mode_name_by_params(compute_epoch=1, agg_interval=1, agg_epoch_delay=0):
    if agg_epoch_delay ==0:
        mode = "offline"
    else:
        mode = "online_delay" + str(agg_epoch_delay)
    mode+= "_epoch"+str(compute_epoch) + "_agg"+str(agg_interval)
    return mode


def get_params_by_ol_mode_name(mode_name, compute_epoch=1):
    if mode_name == "offline_milisecond":
        return dict(compute_epoch=1, agg_interval=1, agg_epoch_delay=0)
    if mode_name == "online_milisecond":
        return dict(compute_epoch=1, agg_interval=1, agg_epoch_delay=1)
    if mode_name == "epoch_milisecond":
        return dict(compute_epoch=compute_epoch, agg_interval=1, agg_epoch_delay=1)
    if mode_name == "offline_epoch":
        return dict(compute_epoch=compute_epoch, agg_interval=compute_epoch, agg_epoch_delay=0)
    if mode_name == "online_epoch":
        return dict(compute_epoch=compute_epoch, agg_interval=compute_epoch, agg_epoch_delay=1)
    return {}


def write_results(tps, total_tp, dif_stats,
                  compute_epoch=1, agg_interval=1, agg_epoch_delay=0, n_milis=5000, top=None,
                  output_dir=".", max_degree=1, total_load=0, run_id="", flow_avg=0, flow_var=0, **kwargs):
    mode_name = get_new_mode_name_by_params(compute_epoch, agg_interval, agg_epoch_delay)
    test_file_path = path.join(output_dir, "res_"+str(n_milis)+"_"+mode_name+".json")
    with open(test_file_path, "w") as test_res_file:
        json.dump({"total_tp": total_tp, "tps": tps}, test_res_file)
    all_res_file_path = path.join(output_dir, "res_"+str(n_milis)+".csv")
    if not path.isfile(all_res_file_path):
        with open(all_res_file_path, "w") as all_res_file:
            row = ["mode", "total_tp", "n_milis", "compute_epoch", "agg_interval", "agg_epoch_delay", "top", "max_degree",
                   "links_avg", "links_var", "change_avg", "change_var", "total_load", "run_id", "flow_avg", "flow_var", "tps"]
            all_res_file.write(",".join(map(str, row))+"\n")
    with open(all_res_file_path, "a+") as all_res_file:
        row = [mode_name, total_tp, n_milis, compute_epoch, agg_interval, agg_epoch_delay, top, max_degree,
               dif_stats["totals"].get_avg(), dif_stats["totals"].get_var(),
               dif_stats["changes"].get_avg(), dif_stats["changes"].get_var(),
               total_load, run_id, flow_avg, flow_var] +tps
        all_res_file.write(",".join(map(str, row))+"\n")


class SeriesStats:
    def __init__(self):
        self.sum = 0
        self.sum_sqr = 0
        self.count = 0
        
    def add(self, x):
        self.sum += x
        self.sum_sqr += x**2
        self.count += 1
        
    def get_avg(self):
        return self.sum * 1.0 / self.count
    
    def get_var(self):
        return self.sum_sqr * 1.0 / self.count - self.get_avg()**2


def matches_dif(new_matches, old_matches, dif_stats):
    new_matches = {tuple(p) for p in new_matches}
    old_matches = {tuple(p) for p in old_matches}
    total = len(new_matches)
    change = len(set(new_matches) ^ set(old_matches))
    dif_stats["totals"].add(total)
    dif_stats["changes"].add(change)


def compute_throughput(compute_epoch=1, agg_interval=1, agg_epoch_delay=0, n_milis=5000, top=None, output_dir=".", **kwargs):
    print dict(compute_epoch=compute_epoch, agg_interval=agg_interval, agg_epoch_delay=agg_epoch_delay)
    per_mili_pattern = path.join(output_dir, "matrix_mili_%d")
    per_mili_matrix_list = MatrixList(per_mili_pattern)
    
    if top:
        per_mili_match_pattern = path.join(output_dir, "mwm_mili_%d_top_" + str(top)+("_deg_%d" % kwargs.get("max_degree", 1)))
    else:
        per_mili_match_pattern = path.join(output_dir, "mwm_mili_%d"+("_deg_%d" % kwargs.get("max_degree", 1)))
    per_mili_match_list = DictList(per_mili_match_pattern)

    if top:
        per_interval_match_pattern = path.join(output_dir, "mwm_agg_%d_%d-%d_top_" + str(top)+("_deg_%d" % kwargs.get("max_degree", 1)))
    else:
        per_interval_match_pattern = path.join(output_dir, "mwm_agg_%d_%d-%d"+("_deg_%d" % kwargs.get("max_degree", 1)))
    per_interval_match_list = DictList(per_interval_match_pattern)
    
    def get_matches(t):
        end = t - t % compute_epoch - (agg_epoch_delay-1) * compute_epoch
        if end > n_milis:
            end -= compute_epoch
        start = end - agg_interval
        print "start", start, "end", end
        if start < 0:
            return {}
        if agg_interval == 1:
            return list(per_mili_match_list[start])
        return per_interval_match_list[(agg_interval, start, end-1)]
    
    tps = []
    total_tp = 0
    dif_stats = dict(totals=SeriesStats(), changes=SeriesStats())
    old_matches = []
    for t in range(n_milis):
        print "\r", t, "/", n_milis,
        matrix = list(per_mili_matrix_list[t])
        matches = get_matches(t)
        matches_dif(matches, old_matches, dif_stats)
        tp = sum([matrix[m[0]][m[1]] + matrix[m[1]][m[0]] for m in matches])
        tps.append(tp)
        total_tp += tp
        old_matches = matches
    return tps, total_tp, dif_stats


def main():
    parser = argparse.ArgumentParser(
        description="""Compute throughput for each mili [t,t+1) using MWM of interval [start, end) where
    end = t - t%compute_epoch - (agg_epoch_delay-1)*compute_epoch, and
    start = end - agg_interval.
    """,
        epilog="""Examples:
    online_milisecond:  "compute_tp.py --agg_epoch_delay 1 --agg_interval 1   --compute_epoch 1"
    offline_milisecond: "compute_tp.py --agg_epoch_delay 0 --agg_interval 1   --compute_epoch 1"
    epoch_milisecond:   "compute_tp.py --agg_epoch_delay 1 --agg_interval 1   --compute_epoch 100"
    online_epoch:       "compute_tp.py --agg_epoch_delay 1 --agg_interval 100 --compute_epoch 100"
    offline_epoch:      "compute_tp.py --agg_epoch_delay 0 --agg_interval 100 --compute_epoch 100"
    """)
    parser.add_argument('--conf', default="conf.json", type=open,
                        help='configuration file (default: conf.json)')
    parser.add_argument('--compute_epoch', default=1, type=int,
                        help='each compute interval length (default: 1 = mili)')
    parser.add_argument('--agg_interval', default=1, type=int,
                        help='each aggregation interval length (default: 1 = mili)')
    parser.add_argument('--agg_epoch_delay', default=0, type=int,
                        help='number of compute epoch delays before aggregation (default: 0 = offline)')
    
    args = parser.parse_args()
    conf = json.load(args.conf)
    conf["compute_epoch"] = args.compute_epoch
    conf["agg_interval"] = args.agg_interval
    conf["agg_epoch_delay"] = args.agg_epoch_delay
    tps, total_tp, dif_stats = compute_throughput(**conf)
    write_results(tps, total_tp, dif_stats, **conf)


if __name__ == "__main__":
    main()

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API