# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA ################################################################################ # FUNCTION: GENERALIZED DISTRIBUTION: # nigFit Fits parameters of a normal inverse Gaussian density # .nigFit.mle max Log-likelihood Estimation # .nigFit.gmm gemeralized method of moments estimation # .nigFit.mps maximum product spacings estimation # .nigFit.vmps minimum variance product spacings estimation ################################################################################ nigFit <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, method = c("mle", "gmm", "mps", "vmps"), scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { # A function implemented by Diethelm Wuertz # FUNCTION: # Settings: method = match.arg(method) # Select: if (method == "mle") { # MLE: fit = .nigFit.mle(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } else if (method == "gmm") { # GMM: fit = .nigFit.gmm(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } else if (method == "mps") { # MPS: fit = .nigFit.mps(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } else if (method == "vmps") { # MPS: fit = .nigFit.vmps(x = x, alpha = alpha, beta = beta, delta = delta, mu = mu , scale = scale, doplot = doplot, span = span, trace = trace, title = title, description = description, ...) } # Return Value: fit } # ------------------------------------------------------------------------------ .nigFit.mle <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits parameters of a NIG using maximum log-likelihood # Example: # set.seed(4711); x = rnig(500); mle = .nigFit.mle(x); mle@fit$estimate # FUNCTION: # Transform: x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } # Objective Function: obj = function(x, y = x, trace) { if (abs(x[2]) >= x[1]) return(1e9) f = -sum(dnig(y, x[1], x[2], x[3], x[4], log = TRUE)) # Print Iteration Path: if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x, "\n") } f } # Parameter Estimation: eps = 1e-10 BIG = 1000 fit = nlminb( start = c(alpha, beta, delta, mu), objective = obj, lower = c(eps, -BIG, eps, -BIG), upper = BIG, y = x, trace = trace) names(fit$par) <- c("alpha", "beta", "delta", "mu") # Rescale Result: if (scale) { fit$scaleParams = c(SD, SD, 1/SD, 1/SD) fit$par = fit$par / fit$scaleParams fit$objective = obj(fit$par, y = as.vector(x.orig), trace = trace) } else { fit$scaleParams = rep(1, time = length(fit$par)) } fit$scale = scale fit$estimate = fit$par fit$minimum = -fit$objective fit$code = fit$convergence # Standard Errors and t-Values: fit = .distStandardErrors(fit, obj, x) # Add Title and Description: if (is.null(title)) title = "Normal Inverse Gaussian Parameter Estimation" if (is.null(description)) description = description() # Optional Plot: if (doplot) .distFitPlot( fit, x = x.orig, FUN = "dnig", main = "NIG Parameter Estimation", span = span, add = add, ...) # Return Value: new("fDISTFIT", call = match.call(), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } # ------------------------------------------------------------------------------ .nigFit.gmm <- function(x, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits parameters of a NIG using GMM estimator # Example: # set.seed(4711); x = rnig(500); gmm = .nigFit.gmm(x)@fit$estimate; gmm # FUNCTION: # Transform: x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } # Settings: CALL = match.call() # Parameter Estimation: obj <- function(Theta, x) { # Parameters: alpha = Theta[1] beta = Theta[2] delta = Theta[3] mu = Theta[4] names(Theta) <- c("alpha", "beta", "delta", "mu") # Trace: if (TRUE) print(Theta) # Moments: m1 <- x - .ghMuMoments(1, alpha, beta, delta, mu, lambda = -0.5) m2 <- x^2 - .ghMuMoments(2, alpha, beta, delta, mu, lambda = -0.5) m3 <- x^3 - .ghMuMoments(3, alpha, beta, delta, mu, lambda = -0.5) m4 <- x^4 - .ghMuMoments(4, alpha, beta, delta, mu, lambda = -0.5) # Result: f <- cbind(m1, m2, m3, m4) return(f) } r <- .gmm(g = obj, x = x, t0 = c(1, 0, 1, 0)) names(r$par) <- c("alpha", "beta", "delta", "mu") # Add Title and Description: if (is.null(title)) title = "Normal Inverse Gaussian Parameter Estimation" if (is.null(description)) description = description() # Rescale Result: if (scale) { r$par = r$par / c(SD, SD, 1/SD, 1/SD) r$objective = NA } fit = list(estimate = r$par) # Optional Plot: if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 51) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) if (add) { lines(x = span, y = log(y.points), col = "steelblue") } else { plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("NIG GMM Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } } # Return Value: new("fDISTFIT", call = as.call(CALL), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } # ------------------------------------------------------------------------------ .nigFit.mps <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits parameters of a NIG using maximum product spacings # Example: # set.seed(4711); x = rnig(500); mps = .nigFit.mps(x)@fit$estimate; mps # FUNCTION: # Transform: x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } # Settings: CALL = match.call() # Parameter Estimation: obj <- function(x, y = x, trace) { if (abs(x[2]) >= x[1]) return(1e9) DH = diff(c(0, na.omit(.pnigC(sort(y), x[1], x[2], x[3], x[4])), 1)) f = -mean(log(DH[DH > 0]))*length(y) # Print Iteration Path: if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x[1], x[2], x[3], x[4], "\n") } f } eps = 1e-10 BIG = 1000 r = nlminb(start = c(alpha, beta, delta, mu), objective = obj, lower = c(eps, -BIG, eps, -BIG), upper = BIG, y = x, trace = trace) names(r$par) <- c("alpha", "beta", "delta", "mu") # Standard Errors: hessian = tsHessian(x = r$par, fun = obj, y = x, trace = FALSE) colnames(hessian) = rownames(hessian) = names(r$par) varcov = solve(hessian) par.ses = sqrt(diag(varcov)) if (scale) par.ses = par.ses / c(SD, SD, 1/SD, 1/SD) # Add Title and Description: if (is.null(title)) title = "NIG mps Parameter Estimation" if (is.null(description)) description = description() # Result: if (scale) { r$par = r$par / c(SD, SD, 1/SD, 1/SD) r$objective = obj(r$par, y = as.vector(x.orig), trace = trace) } fit = list( estimate = r$par, minimum = -r$objective, error = par.ses, code = r$convergence) # Optional Plot: if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 501) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) if (add) { lines(x = span, y = log(y.points), col = "steelblue") } else { plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("NIG MPS Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } } # Return Value: new("fDISTFIT", call = as.call(CALL), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } # ------------------------------------------------------------------------------ .nigFit.vmps <- function (x, alpha = 1, beta = 0, delta = 1, mu = 0, scale = TRUE, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE, title = NULL,description = NULL, ...) { # A function implemented by Yohan Chalabi # Description: # Fits parameters of a NIG using maximum product spacings # Example: # set.seed(4711); x = rnig(500); vmps = .nigFit.vmps(x)@fit$estimate; vmps # FUNCTION: # Transform: x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x/SD } # Settings: CALL = match.call() # Parameter Estimation: obj <- function(x, y = x, trace) { if (abs(x[2]) >= x[1]) return(1e+9) DH = diff(c(0, na.omit(.pnigC(sort(y), x[1], x[2], x[3], x[4])), 1)) f = log(var(DH[DH > 0])) if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x[1], x[2], x[3], x[4], "\n") } f } eps = 1e-10 BIG = 1000 r = nlminb( start = c(alpha, beta, delta, mu), objective = obj, lower = c(eps, -BIG, eps, -BIG), upper = BIG, y = x, trace = trace) names(r$par) <- c("alpha", "beta", "delta", "mu") # Standard Errors: hessian = tsHessian(x = r$par, fun = obj, y = x, trace = FALSE) colnames(hessian) = rownames(hessian) = names(r$par) varcov = solve(hessian) par.ses = sqrt(diag(varcov)) if (scale) par.ses = par.ses / c(SD, SD, 1/SD, 1/SD) # Add Title and Description: if (is.null(title)) title = "NIG varMPS Parameter Estimation" if (is.null(description)) description = description() # Result: if (scale) { r$par = r$par/c(SD, SD, 1/SD, 1/SD) r$objective = obj(r$par, y = as.vector(x.orig), trace = trace) } fit = list( estimate = r$par, minimum = -r$objective, error = par.ses, code = r$convergence) # Optional Plot: if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 501) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) if (add) { lines(x = span, y = log(y.points), col = "steelblue") } else { plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("NIG varMPS Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } } # Return Value: new("fDISTFIT", call = as.call(CALL), model = "Normal Inverse Gaussian Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = description() ) } ################################################################################