\name{taylor} \alias{taylor} \title{ Taylor Series Approximation } \description{ Local polynomial approximation through Taylor series. } \usage{ taylor(f, x0, n = 4, ...) } \arguments{ \item{f}{differentiable function.} \item{x0}{point where the series expansion will take place.} \item{n}{Taylor series order to be used; should be \code{n <= 4}.} \item{...}{more variables to be passed to function \code{f}.} } \details{ Calculates the first four coefficients of the Taylor series through numerical differentiation and uses some polynomial `yoga'. } \value{ Vector of length \code{n+1} representing a polynomial of degree \code{n}. } \author{ HwB email: } \note{ TODO: Pade approximation. } \seealso{ \code{\link{fderiv}} } \examples{ taylor(sin, 0, 4) #=> -0.1666666 0.0000000 1.0000000 0.0000000 taylor(exp, 1, 4) #=> 0.04166657 0.16666673 0.50000000 1.00000000 1.00000000 f <- function(x) log(1+x) p <- taylor(f, 0, 4) p # log(1+x) = 0 + x - 1/2 x^2 + 1/3 x^3 - 1/4 x^4 +- ... # [1] -0.250004 0.333334 -0.500000 1.000000 0.000000 \dontrun{ x <- seq(-1.0, 1.0, length.out=100) yf <- f(x) yp <- polyval(p, x) plot(x, yf, type = "l", col = "gray", lwd = 3) lines(x, yp, col = "red") grid()} } \keyword{ math }