https://github.com/cran/HLSM
Tip revision: e59f1fc3b0389804e671d681b7fc639e687d4154 authored by Tracy Sweet on 01 March 2020, 06:00:06 UTC
version 0.8.2
version 0.8.2
Tip revision: e59f1fc
plots.Rd
\name{plotDiagnostic}
\alias{plotDiagnostic}
\alias{plotLikelihood}
\alias{plotHLSM.random.fit}
\alias{plotHLSM.fixed.fit}
\alias{plotHLSM.LS}
\alias{HLSMcovplots}
\alias{HLSMfixed.covplots}
\alias{HLSMrandom.covplots}
\title{built-in plot functions for HLSM object}
\description{
A suite of functions for plotting HLSM model fits. HSLMcovplots is the most recent function to plot posterior distribution summaries. plotLikelihood( ) plots the likelihood, and plotDiagnostic( ) plots diagnostic-plot of posterior draws of the parameters from MCMC sample. plotHLSM.random.fit( ) and plotHLSM.fixed.fit( ) are functions to plot mean-results from fitted models, and plotHLSM.LS( ) is for plotting the mean latent position estimates.
}
\usage{
plotLikelihood(object,burnin = 0, thin = 1)
plotDiagnostic(chain)
plotHLSM.random.fit(fitted.model,parameter,burnin=0,thin=1)
plotHLSM.fixed.fit(fitted.model, parameter,burnin=0,thin=1)
plotHLSM.LS(fitted.model,pdfname=NULL,burnin=0,thin=1,...)
HLSMcovplots(fitted.model, burnin=0, thin=1)
}
\arguments{
\item{object}{object of class 'HLSM' obtained as an output from \code{HLSMrandomEF()} or \code{HLSMfixedEF()}
}
\item{fitted.model}{model fit from either HLSMrandomEF() or HLSMfixedEF()}
\item{parameter}{parameter to plot; specified as \code{Beta} for slope coefficients, \code{Intercept} for intercept, and \code{Alpha} for intervention effect}
\item{pdfname}{character to specify the name of the pdf to save the plot if desired. Default is NULL}
\item{burnin}{numeric value to burn the chain for plotting the results from the 'HLSM'object }
\item{thin}{a numeric thinning value}
\item{chain}{a numeric vector of posterior draws of parameter of interest.}
\item{...}{other options}
}
\value{
returns plot objects.
}
\author{Sam Adhikari}
\examples{
#using advice seeking network of teachers in 15 schools
#to fit the data
#Random effect model#
priors = NULL
tune = NULL
initialVals = NULL
niter = 10
random.fit = HLSMrandomEF(Y = ps.advice.mat,FullX = ps.edge.vars.mat,
initialVals = initialVals,priors = priors,
tune = tune,tuneIn = FALSE,dd = 2,niter = niter)
HLSMcovplots(random.fit)
plotLikelihood(random.fit)
intercept = getIntercept(random.fit)
dim(intercept) ##is an array of dimension niter by 15
plotDiagnostic(intercept[,1])
plotHLSM.LS(random.fit)
plotHLSM.random.fit(random.fit,parameter = 'Beta')
plotHLSM.random.fit(random.fit,parameter = 'Intercept')
##look at the diagnostic plot of intercept for the first school
}