(* -------------------------------------------------------------------- * Copyright (c) - 2012--2016 - IMDEA Software Institute * Copyright (c) - 2012--2021 - Inria * Copyright (c) - 2012--2021 - Ecole Polytechnique * * Distributed under the terms of the CeCILL-B-V1 license * -------------------------------------------------------------------- *) (* -------------------------------------------------------------------- *) require import AllCore StdRing StdOrder. (*---*) import RField RealOrder. op charfun (p:'a -> bool) x: real = if p x then 1%r else 0%r. op mu1 (d:'a distr) x: real = mu d (pred1 x). op weight (d:'a distr): real = mu d predT. op in_supp x (d:'a distr) : bool = 0%r < mu1 d x. op support (d:'a distr) x = in_supp x d. pred is_lossless (d : 'a distr) = mu d predT = 1%r. pred is_full (d : 'a distr) = forall x, support d x. pred is_subuniform (d : 'a distr) = forall (x y:'a), support d x => support d y => mu d (pred1 x) = mu d (pred1 y). pred is_uniform (d : 'a distr) = is_lossless d /\ is_subuniform d. pred is_subuniform_over (d : 'a distr) (p : 'a -> bool) = (forall x, support d x <=> p x) /\ is_subuniform d. pred is_uniform_over (d : 'a distr) (p : 'a -> bool) = (forall x, support d x <=> p x) /\ is_uniform d. (** Point-wise equality *) pred (==)(d d':'a distr) = (forall x, mu1 d x = mu1 d' x). (** Event-wise equality *) pred (===)(d d':'a distr) = forall p, mu d p = mu d' p. (** Axioms *) axiom mu_bounded (d:'a distr) (p:'a -> bool): 0%r <= mu d p <= 1%r. (* now mu0 *) axiom mu_false (d:'a distr): mu d pred0 = 0%r. axiom mu_sub (d:'a distr) (p q:('a -> bool)): p <= q => mu d p <= mu d q. axiom mu_supp_in (d:'a distr) p: mu d p = mu d predT <=> support d <= p. axiom mu_or (d:'a distr) (p q:('a -> bool)): mu d (predU p q) = mu d p + mu d q - mu d (predI p q). axiom pw_eq (d d':'a distr): d == d' <=> d = d'. axiom uniform_unique (d d':'a distr): support d = support d' => is_uniform d => is_uniform d' => d = d'. (** Lemmas *) lemma witness_nzero P (d:'a distr): 0%r < mu d P => (exists x, P x ). proof. have: P <> pred0 => (exists x, P x). apply absurd=> /=. have -> h: (!exists (x:'a), P x) = forall (x:'a), !P x by smt. by apply fun_ext=> x; rewrite h. smt. qed. lemma ew_eq (d d':'a distr): d === d' => d = d'. proof. move=> ew_eq; rewrite -pw_eq=> x. by rewrite /mu1 ew_eq. qed. lemma nosmt mu_or_le (d:'a distr) (p q:'a -> bool) r1 r2: mu d p <= r1 => mu d q <= r2 => mu d (predU p q) <= r1 + r2 by []. lemma nosmt mu_and (d:'a distr) (p q:'a -> bool): mu d (predI p q) = mu d p + mu d q - mu d (predU p q) by []. lemma nosmt mu_and_le_l (d:'a distr) (p q:'a -> bool) r: mu d p <= r => mu d (predI p q) <= r. proof. apply (ler_trans (mu d p)). by apply mu_sub; rewrite /predI=> x. qed. lemma nosmt mu_and_le_r (d:'a distr) (p q:'a -> bool) r : mu d q <= r => mu d (predI p q) <= r. proof. apply (ler_trans (mu d q)). by apply mu_sub; rewrite /predI=> x. qed. lemma mu_supp (d:'a distr): mu d (support d) = mu d predT. proof. by rewrite mu_supp_in. qed. lemma mu_eq (d:'a distr) (p q:'a -> bool): p == q => mu d p = mu d q. proof. by move=> ext_p_q; congr=> //; apply fun_ext. qed. lemma mu_disjoint (d:'a distr) (p q:('a -> bool)): (predI p q) <= pred0 => mu d (predU p q) = mu d p + mu d q. proof. move=> and_p_q_false; rewrite mu_or. have ->: (predI p q) = pred0 by apply subpred_asym. by rewrite mu_false. qed. lemma mu_not (d:'a distr) (p:('a -> bool)): mu d (predC p) = mu d predT - mu d p. proof. have: mu d (predC p) + mu d p = mu d predT; [rewrite -mu_disjoint | smt]. (* rewrite seems to unroll too much *) + by rewrite predCI; apply/(subpred_refl<:'a> pred0). + by rewrite predCU. qed. lemma mu_split (d:'a distr) (p q:('a -> bool)): mu d p = mu d (predI p q) + mu d (predI p (predC q)). proof. rewrite -mu_disjoint; first smt. by apply mu_eq=> x; rewrite /predI /predC /predU !(andbC (p x)) orDandN. qed. lemma mu_support (p:('a -> bool)) (d:'a distr): mu d p = mu d (predI p (support d)). proof. apply/ler_anti; split => [|_]; last by apply/mu_sub/predIsubpredl. have ->: forall (p q:'a -> bool), (predI p q) = predC (predU (predC p) (predC q)). by (move=> p1 p2; apply fun_ext; delta; smt). (* delta *) by rewrite mu_not mu_or !mu_not mu_supp; smt. qed. lemma witness_support P (d:'a distr): 0%r < mu d P <=> (exists x, P x /\ in_supp x d). proof. split=> [|[] x [x_in_P x_in_d]]. rewrite mu_support=> nzero. apply witness_nzero in nzero; case nzero=> x. rewrite /predI //= => p_supp. by exists x. have: mu d (pred1 x) <= mu d P /\ 0%r < mu d (pred1 x); last smt. split=> [|//=]. by rewrite mu_sub // /Core.(<=) /pred1 => x0 <<-. qed. lemma mu_sub_support (d:'a distr) (p q:('a -> bool)): (predI p (support d)) <= (predI q (support d)) => mu d p <= mu d q. proof. by move=> ple_p_q; rewrite (mu_support p) (mu_support q); apply mu_sub. qed. lemma mu_eq_support (d:'a distr) (p q:('a -> bool)): (predI p (support d)) = (predI q (support d)) => mu d p = mu d q. proof. by move=> eq_supp; rewrite (mu_support p) (mu_support q); apply mu_eq; rewrite eq_supp. qed. lemma weight_0_mu (d:'a distr): weight d = 0%r => forall p, mu d p = 0%r by []. lemma mu_one (P:'a -> bool) (d:'a distr): P == predT => weight d = 1%r => mu d P = 1%r. proof. move=> heq <-. rewrite /weight. congr=> //. by apply fun_ext. qed.