\name{TrenchInverse} \alias{TrenchInverse} \title{compute the matrix inverse of a positive-definite Toepliz matrix } \description{ The Trench algorithm (Golub and Vanload, 1983) is implemented in C and interfaced to R. This provides an expedient method for obtaining the matrix inverse of the covariance matrix of n successive observations from a stationary time series. Some applications of this are discussed by McLeod and Krougly (2005). } \usage{TrenchInverse(G)} \arguments{ \item{G}{ a positive definite Toeplitz matrix } } \value{the matrix inverse of G is computed} \references{ Golub, G. and Van Loan (1983). Matrix Computations, 2nd Ed. John Hoptkins University Press, Baltimore. Algorithm 5.7-3. McLeod, A.I., Yu, Hao, Krougly, Zinovi L. (2007). Algorithms for Linear Time Series Analysis, Journal of Statistical Software. } \author{ A.I. McLeod } \note{ TrenchInverse(x) assumes that x is a symmetric Toeplitz matrix but it does not specifically test for this. Instead it merely takes the first row of x and passes this directly to the C code program which uses this more compact storage format. The C code program then computes the inverse. An error message is given if the C code algorithm encounters a non-positive definite input. } \section{Warning }{ You should test the input x using is.toeplitz(x) if you are not sure if x is a symmetric Toeplitz matix. } \seealso{ \code{\link{TrenchLoglikelihood}}, \code{\link{is.toeplitz}}, \code{\link{DLLoglikelihood}}, \code{\link{TrenchMean}}, \code{\link{solve}} } \examples{ #compute inverse of matrix and compare with result from solve data(LakeHuron) r<-acf(LakeHuron, plot=FALSE, lag.max=4)$acf R<-toeplitz(c(r)) Ri<-TrenchInverse(R) Ri2<-solve(R) Ri Ri2 #invert a matrix of order n and compute the maximum absolute error # in the product of this inverse with the original matrix n<-5 r<-0.8^(0:(n-1)) G<-toeplitz(r) Gi<-TrenchInverse(G) GGi<-crossprod(t(G),Gi) id<-matrix(0, nrow=n, ncol=n) diag(id)<-1 err<-max(abs(id-GGi)) err } \keyword{ts } \keyword{array }