https://github.com/tensorly/tensorly
Tip revision: c41092dd835d5b74555bac1e5be402b7da103586 authored by Jean Kossaifi on 08 November 2021, 12:02:54 UTC
Bump version
Bump version
Tip revision: c41092d
_tucker.py
import tensorly as tl
from ._base_decomposition import DecompositionMixin
from ..base import unfold
from ..tenalg import multi_mode_dot, mode_dot
from ..tucker_tensor import tucker_to_tensor, TuckerTensor, validate_tucker_rank, tucker_normalize
import tensorly.tenalg as tlg
from ..tenalg.proximal import hals_nnls, active_set_nnls, fista
from math import sqrt
import warnings
from collections.abc import Iterable
from tensorly.decomposition._nn_cp import make_svd_non_negative
# Author: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>
# License: BSD 3 clause
def initialize_tucker(tensor, rank, modes, random_state, init='svd', svd='numpy_svd', non_negative= False):
"""
Initialize core and factors used in `tucker`.
The type of initialization is set using `init`. If `init == 'random'` then
initialize factor matrices using `random_state`. If `init == 'svd'` then
initialize the `m`th factor matrix using the `rank` left singular vectors
of the `m`th unfolding of the input tensor.
Parameters
----------
tensor : ndarray
rank : int
number of components
modes : int list
random_state : {None, int, np.random.RandomState}
init : {'svd', 'random', cptensor}, optional
svd : str, default is 'numpy_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
non_negative : bool, default is False
if True, non-negative factors are returned
Returns
-------
core : ndarray
initialized core tensor
factors : list of factors
"""
try:
svd_fun = tl.SVD_FUNS[svd]
except KeyError:
message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
svd, tl.get_backend(), tl.SVD_FUNS)
raise ValueError(message)
# Initialisation
if init == 'svd':
factors = []
for index, mode in enumerate(modes):
U, S, V = svd_fun(unfold(tensor, mode), n_eigenvecs=rank[index], random_state=random_state)
if non_negative is True:
U = make_svd_non_negative(tensor, U, S, V, nntype="nndsvd")
factors.append(U[:, :rank[index]])
# The initial core approximation is needed here for the masking step
core = multi_mode_dot(tensor, factors, modes=modes, transpose=True)
if non_negative is True:
core = tl.abs(core)
elif init == 'random':
rng = tl.check_random_state(random_state)
core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor)) # Check this
factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
if non_negative is True:
factors = [tl.abs(f) for f in factors]
core = tl.abs(core)
else:
(core, factors) = init
return core, factors
def partial_tucker(tensor, modes, rank=None, n_iter_max=100, init='svd', tol=10e-5,
svd='numpy_svd', random_state=None, verbose=False, mask=None):
"""Partial tucker decomposition via Higher Order Orthogonal Iteration (HOI)
Decomposes `tensor` into a Tucker decomposition exclusively along the provided modes.
Parameters
----------
tensor : ndarray
modes : int list
list of the modes on which to perform the decomposition
rank : None, int or int list
size of the core tensor, ``(len(ranks) == tensor.ndim)``
if int, the same rank is used for all modes
n_iter_max : int
maximum number of iteration
init : {'svd', 'random'}, or TuckerTensor optional
if a TuckerTensor is provided, this is used for initialization
svd : str, default is 'numpy_svd'
function to use to compute the SVD,
acceptable values in tensorly.SVD_FUNS
tol : float, optional
tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
random_state : {None, int, np.random.RandomState}
verbose : int, optional
level of verbosity
mask : ndarray
array of booleans with the same shape as ``tensor`` should be 0 where
the values are missing and 1 everywhere else. Note: if tensor is
sparse, then mask should also be sparse with a fill value of 1 (or
True).
Returns
-------
core : ndarray
core tensor of the Tucker decomposition
factors : ndarray list
list of factors of the Tucker decomposition.
with ``core.shape[i] == (tensor.shape[i], ranks[i]) for i in modes``
"""
if rank is None:
message = "No value given for 'rank'. The decomposition will preserve the original size."
warnings.warn(message, Warning)
rank = [tl.shape(tensor)[mode] for mode in modes]
elif isinstance(rank, int):
message = "Given only one int for 'rank' instead of a list of {} modes. Using this rank for all modes.".format(len(modes))
warnings.warn(message, Warning)
rank = tuple(rank for _ in modes)
else:
rank = tuple(rank)
if mask is not None and init == "svd":
message = "Masking occurs after initialization. Therefore, random initialization is recommended."
warnings.warn(message, Warning)
try:
svd_fun = tl.SVD_FUNS[svd]
except KeyError:
message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
svd, tl.get_backend(), tl.SVD_FUNS)
raise ValueError(message)
# SVD init
if init == 'svd':
factors = []
for index, mode in enumerate(modes):
eigenvecs, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank[index], random_state=random_state)
factors.append(eigenvecs)
# The initial core approximation is needed here for the masking step
core = multi_mode_dot(tensor, factors, modes=modes, transpose=True)
elif init == 'random':
rng = tl.check_random_state(random_state)
# len(rank) == len(modes) but we still want a core dimension for the modes not optimized
core_shape = list(tl.shape(tensor))
for (i, e) in enumerate(modes):
core_shape[e] = rank[i]
core = tl.tensor(rng.random_sample(core_shape), **tl.context(tensor))
factors = [tl.tensor(rng.random_sample((tl.shape(tensor)[mode], rank[index])), **tl.context(tensor)) for (index, mode) in enumerate(modes)]
else:
(core, factors) = init
rec_errors = []
norm_tensor = tl.norm(tensor, 2)
for iteration in range(n_iter_max):
if mask is not None:
tensor = tensor*mask + multi_mode_dot(core, factors, modes=modes, transpose=False)*(1-mask)
for index, mode in enumerate(modes):
core_approximation = multi_mode_dot(tensor, factors, modes=modes, skip=index, transpose=True)
eigenvecs, _, _ = svd_fun(unfold(core_approximation, mode), n_eigenvecs=rank[index], random_state=random_state)
factors[index] = eigenvecs
core = multi_mode_dot(tensor, factors, modes=modes, transpose=True)
# The factors are orthonormal and therefore do not affect the reconstructed tensor's norm
rec_error = sqrt(abs(norm_tensor**2 - tl.norm(core, 2)**2)) / norm_tensor
rec_errors.append(rec_error)
if iteration > 1:
if verbose:
print('reconstruction error={}, variation={}.'.format(
rec_errors[-1], rec_errors[-2] - rec_errors[-1]))
if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
if verbose:
print('converged in {} iterations.'.format(iteration))
break
return (core, factors)
def tucker(tensor, rank, fixed_factors=None, n_iter_max=100, init='svd',
svd='numpy_svd', tol=10e-5, random_state=None, mask=None, verbose=False):
"""Tucker decomposition via Higher Order Orthogonal Iteration (HOI)
Decomposes `tensor` into a Tucker decomposition:
``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_
Parameters
----------
tensor : ndarray
rank : None, int or int list
size of the core tensor, ``(len(ranks) == tensor.ndim)``
if int, the same rank is used for all modes
fixed_factors : int list or None, default is None
if not None, list of modes for which to keep the factors fixed.
Only valid if a Tucker tensor is provided as init.
n_iter_max : int
maximum number of iteration
init : {'svd', 'random'}, optional
svd : str, default is 'numpy_svd'
function to use to compute the SVD,
acceptable values in tensorly.SVD_FUNS
tol : float, optional
tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
random_state : {None, int, np.random.RandomState}
mask : ndarray
array of booleans with the same shape as ``tensor`` should be 0 where
the values are missing and 1 everywhere else. Note: if tensor is
sparse, then mask should also be sparse with a fill value of 1 (or
True).
verbose : int, optional
level of verbosity
Returns
-------
core : ndarray of size `ranks`
core tensor of the Tucker decomposition
factors : ndarray list
list of factors of the Tucker decomposition.
Its ``i``-th element is of shape ``(tensor.shape[i], ranks[i])``
References
----------
.. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
"""
if fixed_factors:
try:
(core, factors) = init
except:
raise ValueError(f'Got fixed_factor={fixed_factors} but no appropriate Tucker tensor was passed for "init".')
fixed_factors = sorted(fixed_factors)
modes_fixed, factors_fixed = zip(*[(i, f) for (i, f) in enumerate(factors) if i in fixed_factors])
core = multi_mode_dot(core, factors_fixed, modes=modes_fixed)
modes, factors = zip(*[(i, f) for (i, f) in enumerate(factors) if i not in fixed_factors])
init = (core, list(factors))
core, new_factors = partial_tucker(tensor, modes, rank=rank, n_iter_max=n_iter_max, init=init,
svd=svd, tol=tol, random_state=random_state, mask=mask,
verbose=verbose)
factors = list(new_factors)
for i, e in enumerate(fixed_factors):
factors.insert(e, factors_fixed[i])
core = multi_mode_dot(core, factors_fixed, modes=modes_fixed, transpose=True)
return TuckerTensor((core, factors))
else:
modes = list(range(tl.ndim(tensor)))
# TO-DO validate rank for partial tucker as well
rank = validate_tucker_rank(tl.shape(tensor), rank=rank)
core, factors = partial_tucker(tensor, modes, rank=rank, n_iter_max=n_iter_max, init=init,
svd=svd, tol=tol, random_state=random_state, mask=mask,
verbose=verbose)
return TuckerTensor((core, factors))
def non_negative_tucker(tensor, rank, n_iter_max=10, init='svd', tol=10e-5,
random_state=None, verbose=False, return_errors=False,
normalize_factors=False):
"""Non-negative Tucker decomposition
Iterative multiplicative update, see [2]_
Parameters
----------
tensor : ``ndarray``
rank : None, int or int list
size of the core tensor, ``(len(ranks) == tensor.ndim)``
if int, the same rank is used for all modes
n_iter_max : int
maximum number of iteration
init : {'svd', 'random'}
random_state : {None, int, np.random.RandomState}
verbose : int , optional
level of verbosity
ranks : None or int list
size of the core tensor
normalize_factors : if True, aggregates the core which will contain the norms of the factors.
Returns
-------
core : ndarray
positive core of the Tucker decomposition
has shape `ranks`
factors : ndarray list
list of factors of the CP decomposition
element `i` is of shape ``(tensor.shape[i], rank)``
References
----------
.. [2] Yong-Deok Kim and Seungjin Choi,
"Non-negative tucker decomposition",
IEEE Conference on Computer Vision and Pattern Recognition s(CVPR),
pp 1-8, 2007
"""
rank = validate_tucker_rank(tl.shape(tensor), rank=rank)
epsilon = 10e-12
# Initialisation
if init == 'svd':
core, factors = tucker(tensor, rank)
nn_factors = [tl.abs(f) for f in factors]
nn_core = tl.abs(core)
else:
rng = tl.check_random_state(random_state)
core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor)) # Check this
factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
nn_factors = [tl.abs(f) for f in factors]
nn_core = tl.abs(core)
norm_tensor = tl.norm(tensor, 2)
rec_errors = []
for iteration in range(n_iter_max):
for mode in range(tl.ndim(tensor)):
B = tucker_to_tensor((nn_core, nn_factors), skip_factor=mode)
B = tl.transpose(unfold(B, mode))
numerator = tl.dot(unfold(tensor, mode), B)
numerator = tl.clip(numerator, a_min=epsilon, a_max=None)
denominator = tl.dot(nn_factors[mode], tl.dot(tl.transpose(B), B))
denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
nn_factors[mode] *= numerator / denominator
numerator = tucker_to_tensor((tensor, nn_factors), transpose_factors=True)
numerator = tl.clip(numerator, a_min=epsilon, a_max=None)
for i, f in enumerate(nn_factors):
if i:
denominator = mode_dot(denominator, tl.dot(tl.transpose(f), f), i)
else:
denominator = mode_dot(nn_core, tl.dot(tl.transpose(f), f), i)
denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
nn_core *= numerator / denominator
rec_error = tl.norm(tensor - tucker_to_tensor((nn_core, nn_factors)), 2) / norm_tensor
rec_errors.append(rec_error)
if iteration > 1 and verbose:
print('reconstruction error={}, variation={}.'.format(
rec_errors[-1], rec_errors[-2] - rec_errors[-1]))
if iteration > 1 and abs(rec_errors[-2] - rec_errors[-1]) < tol:
if verbose:
print('converged in {} iterations.'.format(iteration))
break
if normalize_factors:
nn_core, nn_factors = tucker_normalize((nn_core, nn_factors))
tensor = TuckerTensor((nn_core, nn_factors))
if return_errors:
return tensor, rec_errors
else:
return tensor
def non_negative_tucker_hals(tensor, rank, n_iter_max=100, init="svd", svd='numpy_svd', tol=1e-8,
sparsity_coefficients=None, core_sparsity_coefficient=None,
fixed_modes=None, random_state=None,
verbose=False, normalize_factors=False, return_errors=False, exact=False,
algorithm='fista'):
"""
Non-negative Tucker decomposition
Uses HALS to update each factor columnwise and uses
fista or active set algorithm to update the core, see [1]_
Parameters
----------
tensor : ndarray
rank : None, int or int list
size of the core tensor, ``(len(ranks) == tensor.ndim)``
if int, the same rank is used for all modes
n_iter_max : int
maximum number of iteration
init : {'svd', 'random'}, optional
svd : str, default is 'numpy_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
tol : float, optional
tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
Default: 1e-8
sparsity_coefficients : array of float (as much as the number of modes)
The sparsity coefficients are used for each factor
If set to None, the algorithm is computed without sparsity
Default: None
core_sparsity_coefficient : array of float. This coefficient imposes sparsity on core
when it is updated with fista.
Default: None
fixed_modes : array of integers (between 0 and the number of modes)
Has to be set not to update a factor, 0 and 1 for U and V respectively
Default: None
verbose : boolean
Indicates whether the algorithm prints the successive
reconstruction errors or not
Default: False
normalize_factors : if True, aggregates the core which will contain the norms of the factors.
return_errors : boolean
Indicates whether the algorithm should return all reconstruction errors
and computation time of each iteration or not
Default: False
exact : If it is True, the HALS nnls subroutines give results with high precision but it needs high computational cost.
If it is False, the algorithm gives an approximate solution.
Default: False
algorithm : {'fista', 'active_set'}
Non negative least square solution to update the core.
Default: 'fista'
Returns
-------
factors : ndarray list
list of positive factors of the CP decomposition
element `i` is of shape ``(tensor.shape[i], rank)``
errors: list
A list of reconstruction errors at each iteration of the algorithm.
Notes
-----
Tucker decomposes a tensor into a core tensor and list of factors:
.. math::
\\begin{equation}
tensor = [| core; factors[0], ... ,factors[-1] |]
\\end{equation}
We solve the following problem for each factor:
.. math::
\\begin{equation}
\\min_{tensor >= 0} ||tensor_[i] - factors[i]\\times core_[i] \\times (\\prod_{i\\neq j}(factors[j]))^T||^2
\\end{equation}
If we define two variables such as:
.. math::
U = core_[i] \\times (\\prod_{i\\neq j}(factors[j]\\times factors[j]^T)) \\
M = tensor_[i]
Gradient of the problem becomes:
.. math::
\\begin{equation}
\\delta = -U^TM + factors[i] \\times U^TU
\\end{equation}
In order to calculate UTU and UTM, we define two variables:
.. math::
\\begin{equation}
core_cross = \prod_{i\\neq j}(core_[i] \\times (\\prod_{i\\neq j}(factors[j]\\times factors[j]^T)) \\
tensor_cross = \prod_{i\\neq j} tensor_[i] \\times factors_[i]
\\end{equation}
Then UTU and UTM becomes:
.. math::
\\begin{equation}
UTU = core_cross_[j] \\times core_[j]^T \\
UTM = (tensor_cross_[j] \\times \\times core_[j]^T)^T
\\end{equation}
References
----------
.. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
"""
rank = validate_tucker_rank(tl.shape(tensor), rank=rank)
n_modes = tl.ndim(tensor)
if sparsity_coefficients is None or not isinstance(sparsity_coefficients, Iterable):
sparsity_coefficients = [sparsity_coefficients] * n_modes
if fixed_modes is None:
fixed_modes = []
# Avoiding errors
for fixed_value in fixed_modes:
sparsity_coefficients[fixed_value] = None
# Generating the mode update sequence
modes = [mode for mode in range(tl.ndim(tensor)) if mode not in fixed_modes]
nn_core, nn_factors = initialize_tucker(tensor, rank, modes, init=init, svd=svd, random_state=random_state,
non_negative=True)
# initialisation - declare local variables
norm_tensor = tl.norm(tensor, 2)
rec_errors = []
# Iterate over one step of NTD
for iteration in range(n_iter_max):
# One pass of least squares on each updated mode
for mode in modes:
# Computing Hadamard of cross-products
pseudo_inverse = nn_factors.copy()
for i, factor in enumerate(nn_factors):
if i != mode:
pseudo_inverse[i] = tl.dot(tl.conj(tl.transpose(factor)), factor)
# UtU
core_cross = multi_mode_dot(nn_core, pseudo_inverse, skip=mode)
UtU = tl.dot(unfold(core_cross, mode), tl.transpose(unfold(nn_core, mode)))
# UtM
tensor_cross = multi_mode_dot(tensor, nn_factors, skip=mode, transpose=True)
MtU = tl.dot(unfold(tensor_cross, mode), tl.transpose(unfold(nn_core, mode)))
UtM = tl.transpose(MtU)
# Call the hals resolution with nnls, optimizing the current mode
nn_factor, _, _, _ = hals_nnls(UtM, UtU, tl.transpose(nn_factors[mode]),
n_iter_max=100, sparsity_coefficient=sparsity_coefficients[mode],
exact=exact)
nn_factors[mode] = tl.transpose(nn_factor)
# updating core
if algorithm == 'fista':
pseudo_inverse[-1] = tl.dot(tl.transpose(nn_factors[-1]), nn_factors[-1])
core_estimation = multi_mode_dot(tensor, nn_factors, transpose=True)
learning_rate = 1
for MtM in pseudo_inverse:
learning_rate *= 1 / (tl.partial_svd(MtM)[1][0])
nn_core = fista(core_estimation, pseudo_inverse, x=nn_core, n_iter_max=n_iter_max,
sparsity_coef=core_sparsity_coefficient, lr=learning_rate,)
if algorithm == 'active_set':
pseudo_inverse[-1] = tl.dot(tl.transpose(nn_factors[-1]), nn_factors[-1])
core_estimation_vec = tl.base.tensor_to_vec(tl.tenalg.mode_dot(tensor_cross, tl.transpose(nn_factors[modes[-1]]), modes[-1]))
pseudo_inverse_kr = tl.tenalg.kronecker(pseudo_inverse)
vectorcore = active_set_nnls(core_estimation_vec, pseudo_inverse_kr, x=nn_core, n_iter_max=n_iter_max)
nn_core = tl.reshape(vectorcore, tl.shape(nn_core))
# Adding the l1 norm value to the reconstruction error
sparsity_error = 0
for index, sparse in enumerate(sparsity_coefficients):
if sparse:
sparsity_error += 2 * (sparse * tl.norm(nn_factors[index], order=1))
# error computation
rec_error = tl.norm(tensor - tucker_to_tensor((nn_core, nn_factors)), 2) / norm_tensor
rec_errors.append(rec_error)
if iteration > 1:
if verbose:
print('reconstruction error={}, variation={}.'.format(
rec_errors[-1], rec_errors[-2] - rec_errors[-1]))
if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
if verbose:
print('converged in {} iterations.'.format(iteration))
break
if normalize_factors:
nn_core, nn_factors = tucker_normalize((nn_core, nn_factors))
tensor = TuckerTensor((nn_core, nn_factors))
if return_errors:
return tensor, rec_errors
else:
return tensor
class Tucker(DecompositionMixin):
"""Tucker decomposition via Higher Order Orthogonal Iteration (HOI).
Decomposes `tensor` into a Tucker decomposition:
``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_
Parameters
----------
tensor : ndarray
rank : None, int or int list
size of the core tensor, ``(len(ranks) == tensor.ndim)``
if int, the same rank is used for all modes
non_negative : bool, default is False
if True, uses a non-negative Tucker via iterative multiplicative updates
otherwise, uses a Higher-Order Orthogonal Iteration.
fixed_factors : int list or None, default is None
if not None, list of modes for which to keep the factors fixed.
Only valid if a Tucker tensor is provided as init.
n_iter_max : int
maximum number of iteration
init : {'svd', 'random'}, optional
svd : str, default is 'numpy_svd'
ignore if non_negative is True
function to use to compute the SVD,
acceptable values in tensorly.SVD_FUNS
tol : float, optional
tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
random_state : {None, int, np.random.RandomState}
verbose : int, optional
level of verbosity
Returns
-------
core : ndarray of size `ranks`
core tensor of the Tucker decomposition
factors : ndarray list
list of factors of the Tucker decomposition.
Its ``i``-th element is of shape ``(tensor.shape[i], ranks[i])``
References
----------
.. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
"""
def __init__(self, rank=None, n_iter_max=100,
init='svd', svd='numpy_svd', tol=10e-5, fixed_factors=None,
random_state=None, mask=None, verbose=False):
self.rank = rank
self.fixed_factors = fixed_factors
self.n_iter_max = n_iter_max
self.init = init
self.svd = svd
self.tol = tol
self.random_state = random_state
self.mask = mask
self.verbose = verbose
def fit_transform(self, tensor):
tucker_tensor = tucker(
tensor,
rank=self.rank,
fixed_factors=self.fixed_factors,
n_iter_max=self.n_iter_max,
init=self.init,
svd=self.svd,
tol=self.tol,
random_state=self.random_state,
mask=self.mask,
verbose=self.verbose,
)
self.decomposition_ = tucker_tensor
return tucker_tensor
# def transform(self, tensor):
# _, factors = self.decomposition_
# return tlg.multi_mode_dot(tensor, factors, transpose=True)
# def inverse_transform(self, tensor):
# _, factors = self.decomposition_
# return tlg.multi_mode_dot(tensor, factors)
def __repr__(self):
return f'Rank-{self.rank} Tucker decomposition via HOOI.'
class Tucker_NN(DecompositionMixin):
"""Non-Negative Tucker decomposition via iterative multiplicative update.
Decomposes `tensor` into a Tucker decomposition:
``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_
Parameters
----------
tensor : ndarray
rank : None, int or int list
size of the core tensor, ``(len(ranks) == tensor.ndim)``
if int, the same rank is used for all modes
non_negative : bool, default is False
if True, uses a non-negative Tucker via iterative multiplicative updates
otherwise, uses a Higher-Order Orthogonal Iteration.
n_iter_max : int
maximum number of iteration
init : {'svd', 'random'}, optional
svd : str, default is 'numpy_svd'
ignore if non_negative is True
function to use to compute the SVD,
acceptable values in tensorly.SVD_FUNS
tol : float, optional
tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
random_state : {None, int, np.random.RandomState}
verbose : int, optional
level of verbosity
Returns
-------
core : ndarray of size `ranks`
core tensor of the Tucker decomposition
factors : ndarray list
list of factors of the Tucker decomposition.
Its ``i``-th element is of shape ``(tensor.shape[i], ranks[i])``
References
----------
.. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
"""
def __init__(self, rank=None, n_iter_max=100,
init='svd', svd='numpy_svd', tol=10e-5,
random_state=None, verbose=False, normalize_factors=False):
self.rank = rank
self.n_iter_max = n_iter_max
self.normalize_factors = normalize_factors
self.init = init
self.svd = svd
self.tol = tol
self.random_state = random_state
self.verbose = verbose
def fit_transform(self, tensor):
tucker_tensor, errors = non_negative_tucker(tensor, rank=self.rank,
n_iter_max=self.n_iter_max,
normalize_factors=self.normalize_factors,
init=self.init,
tol=self.tol,
random_state=self.random_state,
verbose=self.verbose,
return_errors=True)
self.decomposition_ = tucker_tensor
self.errors_ = errors
return tucker_tensor
# def transform(self, tensor):
# _, factors = self.decomposition_
# return tlg.multi_mode_dot(tensor, factors, transpose=True)
# def inverse_transform(self, tensor):
# _, factors = self.decomposition_
# return tlg.multi_mode_dot(tensor, factors)
def __repr__(self):
return f'Rank-{self.rank} Non-Negative Tucker decomposition via multiplicative updates.'