https://github.com/cran/cccd
Tip revision: de4ce40da7a3b119ee4d19055a910ee9a4ad2a63 authored by David J. Marchette on 08 April 2022, 11:22:29 UTC
version 1.6
version 1.6
Tip revision: de4ce40
class.R
vote <- function(x)
{
cls <- unique(x)
best <- 0
k <- 0
for(class in cls){
a <- sum(x==class)
if(a>best){
best <- sum(cls==class)
k <- class
}
else if(a==best){
k <- c(k,class)
}
}
k
}
prune <- function(x,classes,prox="Gabriel",ignore.ties=TRUE,...)
{
MODES <- c("Gabriel","Relative Neighborhood","k-Nearest Neighbor","Minimum Spanning Tree")
tmp <- charmatch(prox,MODES)
if(is.null(tmp)){
stop("invalid proximity graph or proximity graph not recognized")
}
else if(is.na(tmp)){
stop("invalid proximity graph or proximity graph not recognized")
}
else if(tmp==0){
stop("ambiguous proximity graph: retry with more characters")
}
else if(tmp<1 || tmp>length(MODES)){
stop("invalid proximity graph or proximity graph not recognized")
}
mode <- MODES[tmp]
if(mode=="Gabriel")
g <- gg(x,...)
else if(mode=="Relative Neighborhood")
g <- rng(x,...)
else if(mode=="k-Nearest Neighbor")
g <- nng(x,...)
else if(mode=="Minimum Spanning Tree"){
D <- as.matrix(proxy::dist(x))
n <- vcount(g)
A <- matrix(1,nrow=n,ncol=n)
diag(A) <- 0
h <- graph_from_adjacency_matrix(A,mode="undirected")
w <- rep(0,choose(n,2))
k <- 1
for(i in 1:(n-1)){
for(j in (i+1):n){
w[k] <- D[i,j]
k <- k+1
}
}
g <- minimum.spanning.tree(h,weights=w,...)
}
n <- vcount(g)
v <- NULL
for(i in 1:n){
a <- setdiff(neighborhood(g,order=1,nodes=i),i)
w <- vote(classes[a])
if(ignore.ties){
if(any(classes[i] %in% w)) v <- c(v,i)
}
else {
if(length(w)==1)
if(classes[i] == w) v <- c(v,i)
}
}
g$layout <- x
list(x=x[v,],v=v,graph=g)
}