Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:77e9b32bf635481a07721ccf4a5efc246f5bd659

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
import glob
import re
import sys

#'/home/esanford/dev_atac_seq_pipeline/pipeline_outputs/HDD1'
input_data_dir = sys.argv[1]
output_file = sys.argv[2]

class Sample:
#lightweight class for sample paths, heavily borrowed/pasted from atac_pipeline.py
	def __init__(self, name, input_data_dir):
		self.name            = sample_name
		self.output_data_dir = input_data_dir + '/' + sample_name
		# fastqc files
		self.fastqc_r1 = '{0}/{1}_{2}'.format(self.output_data_dir, sample_name, 'R1_fastqc.html')
		# bowtie2 alignment files
		self.bowtie2_stderr_logfile = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'log_stderr_bowtie2.txt')
		self.bowtie2_aligned_reads  = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'bowtie2_aligned_reads.bam')
		# alignment filtering files
		self.tmp_early_filt_output        = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'tmp.lightFilt.bam')
		self.early_filt_fixmate_output    = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'lightFilt.fixmate.bam')
		self.filtered_bam_file            = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'filt.bam')
		self.filtered_bam_file_namesorted = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'filt.nameSorted.bam')
		self.picard_metrics_file          = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'picardMetrics.txt')
		self.picard_output                = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'picardMarkedDups.bam')
		self.final_bam_file               = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.bam')
		self.final_bam_stats              = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.stats.txt')
		self.final_bam_file_namesorted    = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.nameSorted.bam')
		# text file representations of filtered aligned reads
		self.early_tagalign_file            = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'early.tagAlign.gz')
		self.final_tagalign_file            = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.tagAlign.gz')
		self.final_Tn5shifted_tagAlign_file = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.tagAlign_tn5_shifted.gz')
		self.final_bedpe_file               = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.bedpe.gz')
		self.macs2_unsorted_tagAlign_file   = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'macs2_formatted.unsorted.tagAlign')
		self.macs2_tagAlign_file            = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'Tn5_insertion_points.tagAlign.gz')
		# subsampled files
		self.subsampled_tagalign_file = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'subsampled.tagAlign.gz')
		# QC and summary report files
		self.insert_size_histogram_plot = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'insert_size_histogram.pdf')
		self.insert_size_histogram_data = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'insert_size_data.txt')
		self.mitochondrial_read_report  = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'mitochondrial_read_report.txt')
		self.refseq_tss_report          = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'refseq_tss_report.txt')
		self.gencode_tss_report         = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'gencode_tss_report.txt')
		self.pbc_qc_file                = '{0}/{1}.{2}'.format(self.output_data_dir, sample_name, 'final.pbc.qc.txt')

#just for making sample name list
sample_final_bams = glob.glob(input_data_dir + '/*/*.final.bam')
sample_objs = []
for s in sample_final_bams:

	sample_name_regex = '(.*/)(.*).final.bam'
	re_match_obj = re.match(sample_name_regex, s)
	sample_name = re_match_obj.group(2)

	sample_objs.append(Sample(sample_name, input_data_dir))


with open(output_file, 'w') as f:
#write header
	f.write('\t'.join(r'SampleName|initial # read pairs (pre-alignment and filtering)|final # read pairs (aligned, filtered, dups removed)|percent PCR/optical duplicates|est. library size (from Picard MarkDuplicates report)|PCR bottleneck coeff 1|mitochondrial read fraction|TSS read fraction (RefSeq)'.split('|')))
	f.write('\n')
	for s in sample_objs:

		total_num_reads = -1
		with open(s.fastqc_r1) as fr:
			re_num_total_reads = '.*<td>Total Sequences</td><td>([0-9]+)</td>.*'
			for line in fr:
				if re.match(re_num_total_reads, line):
					match_obj = re.match(re_num_total_reads, line)
					total_num_reads = int(match_obj.group(1))

		final_num_reads = -1
		with open(s.final_bam_stats) as fr:
			for line in fr.readlines():
				if 'read1' in line:
					final_num_reads = int(line.split()[0])

		frac_dups = -1
		est_libsize = -1
		with open(s.picard_metrics_file) as fr:
			for i in range(50): #sloppy code to avoid using readlines() method
				line = fr.readline()
				if line.startswith('## METRICS CLASS'):
					fr.readline() #discard header
					relevant_line = fr.readline()
					frac_dups = float(relevant_line.split('\t')[-2])
					est_libsize = int(relevant_line.split('\t')[-1])
					break

		# PBC File output format:
			# TotalReadPairs [tab] DistinctReadPairs [tab] OneReadPair [tab] TwoReadPairs [tab] NRF=Distinct/Total [tab] PBC1=OnePair/Distinct [tab] PBC2=OnePair/TwoPair
		pbc1 = -1
		with open(s.pbc_qc_file) as fr:
			pbc1 = float(fr.readline().split()[-2])

		frac_mito_reads = -1
		with open(s.mitochondrial_read_report) as fr:
			fr.readline() #discard header
			frac_mito_reads = float(fr.readline().split()[-1])

		frac_TSS_reads = -1
		with open(s.refseq_tss_report) as fr:
			fr.readline() #discard header
			frac_TSS_reads = float(fr.readline().split()[-1])


		f.write('\t'.join(map(str, [s.name, total_num_reads, final_num_reads, frac_dups, est_libsize, pbc1, frac_mito_reads, frac_TSS_reads]))+'\n')


back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API