# Copyright 2017-2018 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from collections import Iterable import numpy as np import tensorflow as tf from . import settings from .core.errors import GPflowError def hermgauss(n: int): x, w = np.polynomial.hermite.hermgauss(n) x, w = x.astype(settings.float_type), w.astype(settings.float_type) return x, w def mvhermgauss(H: int, D: int): """ Return the evaluation locations 'xn', and weights 'wn' for a multivariate Gauss-Hermite quadrature. The outputs can be used to approximate the following type of integral: int exp(-x)*f(x) dx ~ sum_i w[i,:]*f(x[i,:]) :param H: Number of Gauss-Hermite evaluation points. :param D: Number of input dimensions. Needs to be known at call-time. :return: eval_locations 'x' (H**DxD), weights 'w' (H**D) """ gh_x, gh_w = hermgauss(H) x = np.array(list(itertools.product(*(gh_x,) * D))) # H**DxD w = np.prod(np.array(list(itertools.product(*(gh_w,) * D))), 1) # H**D return x, w def mvnquad(func, means, covs, H: int, Din: int=None, Dout=None): """ Computes N Gaussian expectation integrals of a single function 'f' using Gauss-Hermite quadrature. :param f: integrand function. Takes one input of shape ?xD. :param means: NxD :param covs: NxDxD :param H: Number of Gauss-Hermite evaluation points. :param Din: Number of input dimensions. Needs to be known at call-time. :param Dout: Number of output dimensions. Defaults to (). Dout is assumed to leave out the item index, i.e. f actually maps (?xD)->(?x*Dout). :return: quadratures (N,*Dout) """ # Figure out input shape information if Din is None: Din = means.shape[1] if type(means.shape) is tuple else means.shape[1].value if Din is None: raise GPflowError("If `Din` is passed as `None`, `means` must have a known shape. " "Running mvnquad in `autoflow` without specifying `Din` and `Dout` " "is problematic. Consider using your own session.") # pragma: no cover xn, wn = mvhermgauss(H, Din) N = tf.shape(means)[0] # transform points based on Gaussian parameters cholXcov = tf.cholesky(covs) # NxDxD Xt = tf.matmul(cholXcov, tf.tile(xn[None, :, :], (N, 1, 1)), transpose_b=True) # NxDxH**D X = 2.0 ** 0.5 * Xt + tf.expand_dims(means, 2) # NxDxH**D Xr = tf.reshape(tf.transpose(X, [2, 0, 1]), (-1, Din)) # (H**D*N)xD # perform quadrature fevals = func(Xr) if Dout is None: Dout = tuple((d if type(d) is int else d.value) for d in fevals.shape[1:]) if any([d is None for d in Dout]): raise GPflowError("If `Dout` is passed as `None`, the output of `func` must have known " "shape. Running mvnquad in `autoflow` without specifying `Din` and `Dout` " "is problematic. Consider using your own session.") # pragma: no cover fX = tf.reshape(fevals, (H ** Din, N,) + Dout) wr = np.reshape(wn * np.pi ** (-Din * 0.5), (-1,) + (1,) * (1 + len(Dout))) return tf.reduce_sum(fX * wr, 0) def ndiagquad(funcs, H: int, Fmu, Fvar, logspace: bool=False, **Ys): """ Computes N Gaussian expectation integrals of one or more functions using Gauss-Hermite quadrature. The Gaussians must be independent. :param funcs: the integrand(s): Callable or Iterable of Callables that operates elementwise, on the following arguments: - `Din` positional arguments to match Fmu and Fvar; i.e., 1 if Fmu and Fvar are tensors; otherwise len(Fmu) (== len(Fvar)) positional arguments F1, F2, ... - the same keyword arguments as given by **Ys All arguments will be tensors of shape (N, 1) :param H: number of Gauss-Hermite quadrature points :param Fmu: array/tensor or `Din`-tuple/list thereof :param Fvar: array/tensor or `Din`-tuple/list thereof :param logspace: if True, funcs are the log-integrands and this calculates the log-expectation of exp(funcs) :param **Ys: arrays/tensors; deterministic arguments to be passed by name Fmu, Fvar, Ys should all have same shape, with overall size `N` (i.e., shape (N,) or (N, 1)) :return: shape is the same as that of the first Fmu Example use-cases: Fmu, Fvar are mean and variance of the latent GP, can be shape (N, 1) or (N,) m1, m2 are 'scalar' functions of a single argument F, broadcasting over arrays Em1, Em2 = ndiagquad([m1, m2], 50, Fmu, Fvar) calculates Em1 = ∫ m1(F) N(F; Fmu, Fvar) dF and Em2 = ∫ m2(F) N(F; Fmu, Fvar) dF for each of the elements of Fmu and Fvar. Em1 and Em2 have the same shape as Fmu. logp is a 'scalar' function of F and Y Y are the observations, with shape (N,) or (N, 1) with same length as Fmu and Fvar Ev = ndiagquad(logp, 50, Fmu, Fvar, Y=Y) calculates Ev = ∫ logp(F, Y) N(F; Fmu, Fvar) dF (variational expectations) for each of the elements of Y, Fmu and Fvar. Ev has the same shape as Fmu. Ep = ndiagquad(logp, 50, Fmu, Fvar, logspace=True, Y=Y) calculates Ep = log ∫ exp(logp(F, Y)) N(F; Fmu, Fvar) dF (predictive density) for each of the elements of Y, Fmu and Fvar. Ep has the same shape as Fmu. Heteroskedastic likelihoods: g1, g2 are now functions of both F and G logp is a function of F, G and Y Gmu, Gvar are mean and variance of a different GP controlling the variance Em = ndiagquad(m1, 50, Fmu, Fvar) -> Em1 = ∫∫ m1(F, G) N(F; Fmu, Fvar) N(G; Gmu, Gvar) dF dG Ev = ndiagquad(logp, 50, Fmu, Fvar, Y=Y) -> Ev = ∫∫ logp(F, G, Y) N(F; Fmu, Fvar) N(G; Gmu, Gvar) dF dG (variational expectations) Ep = ndiagquad(logp, 50, Fmu, Fvar, logspace=True, Y=Y) -> Ep = log ∫∫ exp(logp(F, G, Y)) N(F; Fmu, Fvar) N(G; Gmu, Gvar) dF dG (predictive density) """ def unify(f_list): """ Stack a list of means/vars into a full block """ return tf.reshape( tf.concat([tf.reshape(f, (-1, 1)) for f in f_list], axis=1), (-1, 1, Din)) if isinstance(Fmu, (tuple, list)): Din = len(Fmu) shape = tf.shape(Fmu[0]) Fmu, Fvar = map(unify, [Fmu, Fvar]) # both N x 1 x Din else: Din = 1 shape = tf.shape(Fmu) Fmu, Fvar = [tf.reshape(f, (-1, 1, 1)) for f in [Fmu, Fvar]] xn, wn = mvhermgauss(H, Din) # xn: H**Din x Din, wn: H**Din gh_x = xn.reshape(1, -1, Din) # 1 x H**Din x Din Xall = gh_x * tf.sqrt(2.0 * Fvar) + Fmu # N x H**Din x Din Xs = [Xall[:, :, i] for i in range(Din)] # N x H**Din each gh_w = wn * np.pi ** (-0.5 * Din) # H**Din x 1 for name, Y in Ys.items(): Y = tf.reshape(Y, (-1, 1)) Y = tf.tile(Y, [1, H**Din]) # broadcast Y to match X # without the tiling, some calls such as tf.where() (in bernoulli) fail Ys[name] = Y # now N x H**Din def eval_func(f): feval = f(*Xs, **Ys) # f should be elementwise: return shape N x H**Din if logspace: log_gh_w = np.log(gh_w.reshape(1, -1)) result = tf.reduce_logsumexp(feval + log_gh_w, axis=1) else: result = tf.matmul(feval, gh_w.reshape(-1, 1)) return tf.reshape(result, shape) if isinstance(funcs, Iterable): return [eval_func(f) for f in funcs] else: return eval_func(funcs) def ndiag_mc(funcs, S: int, Fmu, Fvar, logspace: bool=False, epsilon=None, **Ys): """ Computes N Gaussian expectation integrals of one or more functions using Monte Carlo samples. The Gaussians must be independent. :param funcs: the integrand(s): Callable or Iterable of Callables that operates elementwise :param S: number of Monte Carlo sampling points :param Fmu: array/tensor :param Fvar: array/tensor :param logspace: if True, funcs are the log-integrands and this calculates the log-expectation of exp(funcs) :param **Ys: arrays/tensors; deterministic arguments to be passed by name Fmu, Fvar, Ys should all have same shape, with overall size `N` :return: shape is the same as that of the first Fmu """ N, D = tf.shape(Fmu)[0], tf.shape(Fvar)[1] if epsilon is None: epsilon = tf.random_normal((S, N, D), dtype=settings.float_type) mc_x = Fmu[None, :, :] + tf.sqrt(Fvar[None, :, :]) * epsilon mc_Xr = tf.reshape(mc_x, (S * N, D)) for name, Y in Ys.items(): D_out = tf.shape(Y)[1] # we can't rely on broadcasting and need tiling mc_Yr = tf.tile(Y[None, ...], [S, 1, 1]) # S x N x D_out Ys[name] = tf.reshape(mc_Yr, (S * N, D_out)) # S * N x D_out def eval_func(func): feval = func(mc_Xr, **Ys) feval = tf.reshape(feval, (S, N, -1)) if logspace: log_S = tf.log(tf.cast(S, settings.float_type)) return tf.reduce_logsumexp(feval, axis=0) - log_S # N x D else: return tf.reduce_mean(feval, axis=0) if isinstance(funcs, Iterable): return [eval_func(f) for f in funcs] else: return eval_func(funcs)