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Supplemental Material
Bridging Semantic Gaps between Natural
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Abstract—This is a supplement material for the paper “Bridging Semantic Gaps between Natural Languages and APIs with Word
Embedding”. This material includes additional discussions and experiments in different aspects of our approach Word2API. we use
Section 1, Section 2 to denote the sections in the main paper and use Section S1, Section S2 to denote the sections in this material.
Part 1. In Section S1, we discuss the selection of the kernel models for Word2API. It is a supplement for Section 3.
Part 2. From Section S2 to S6, we analyze Word2API in relatedness estimation between a word and an API. This part is a supplement
for the experiments in Section 5. Specifically, Section S2 compares Word2API with a similar model API2Vec. Then, we discuss the
influence of the shuffling times (Section S3), the number of iterations (Section S4), and the tuple length (Section S5) on Word2API. In
Section S6, we present the robustness of these experiments by evaluating Word2API over more evaluation metrics. In this part, some
additional human judgements for word-API relatedness are conducted.
Part 3. We analyze Word2API in API sequences recommendation. This part provides additional discussions for Section 6. A new
strong baseline, namely a deep learning approach DeepAPI, is compared in Section S7. We discuss the ability of Word2API in
recommending project-specific APIs in Section S8.
Part 4. We analyze Word2API in API documents linking. This is the task introduced in Section 7. We integrate Word2API into a
state-of-the-art approach JBaker for more accurate API documents linking in Section S9.

F

S1 MODEL SELECTION: CBOW VS. SKIP-GRAM

In the existing studies, two typical models are widely used
for word embedding, i.e., CBOW and Skip-gram [1]. In this
study, we use CBOW to generate word and API vectors. This
section compares the two models, including the efficiency in
model training and the effectiveness in performance.

Efficiency. CBOW is more efficient in training than Skip-
gram. In this study, we train word embedding with a
training set of 138,832,300 word-API tuples. As shown in
Table 1, CBOW takes 62 minutes for training. The training
speed is 518.91 words per thread·second. The training time
is about three times shorter than Skip-gram, which takes
191 minutes for training with a speed of 156.64 words per
thread·second. Skip-gram is slower, as it tries to recover
every surrounding word with the center word. The model
complexity is directly proportional to the number of words
in a window [1]. In contrast, CBOW takes the surrounding
words as a whole to infer to center word. The window
size has fewer influence on its complexity [1]. A faster
model is useful in real scenarios [2], especially for parameter
optimization in designing a task-specific Word2API model.

Effectiveness. We find the two models yield similar perfor-
mance in this study. For example, Table 1 compares CBOW
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TABLE 1: Comparison on CBOW and Skip-gram.

Model Training Performance
Time Speed MAP MMR

CBOW 62 min 518.94 words/thread/sec 0.402 0.433
Skip-gram 191 min 156.64 words/thread/sec 0.385 0.405

and Skip-gram on the task of API documents linking. For
this task, MAP and MMR of CBOW are 0.402 and 0.433,
which slightly outperform Skip-gram by 0.017 and 0.028 re-
spectively. Although existing studies have compared CBOW
and Skip-gram on diverse tasks [1], [3], it is still an open
question on which model is more effective.

Based on above observations, we select the default mod-
el CBOW, which achieves similar performance in less time.

S2 COMPARISON OF WORD2API AND API2VEC

In this section, we introduce API2Vec and its differences
from Word2API. We also design an experiment to compare
the two approaches.

S2.1 Intrinsic Comparison

Tien et al. [4] propose API2Vec to convert APIs into vectors.
It is useful to mine API relationships of different program-
ming languages. A typical application of API2Vec is code
migration, e.g., migrating APIs from Java to C#.

API2Vec constructs API vectors for different program-
ming languages, e.g., Java and C#, as follows. It first sep-
arately trains Java and C# API embedding (vectors) with
large-scale Java and C# source code respectively. Then, it
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manually labels a set of API mappings between Java and
C# that implement the same function, e.g., FileReader#close
in Java is the same as StreamReader#Close in C#. With the
vectors of the mapping APIs, API2Vec trains a transforma-
tion matrix between Java and C# vectors. This matrix can
transform unlabeled Java API vectors into the C# vector
space, thus the vectors of Java and C# APIs are in the same
space. We can use these transformed Java API vectors to
calculate the similarity between Java and C# APIs.

Word2API and API2Vec are different in the target and
the learning strategy. For the target, Word2API targets at
mining relationships between words and APIs instead of
APIs and APIs. For the learning strategy, API2Vec is su-
pervised. API2Vec needs to manually label a set of API
mappings for training. However, as to our knowledge, no
public data set is available to map words with their seman-
tically related APIs. To address this issue, Word2API uses
an unsupervised way to analyze word-API relationships.

S2.2 Performance Comparison

Motivation. In addition to the intrinsic comparison, we ex-
perimentally compare API2Vec with Word2API by adapting
API2Vec to analyze word-API relationships.

Method. Following the process of API2Vec, we train
API2Vec on the word sequences and API sequences with
the word-API tuples constructed in Section 3.2. We generate
a set of word vectors from the word sequences with the
default parameters of the word embedding tool. Similarly,
a set of API vectors can be generated according to the API
sequences. To transform word vectors to API vectors, we
consider two types of word-API mappings to train the trans-
formation matrix, including API2Vecmanual and API2Vecfreqent

API2Vecmanual uses manually labeled word-API map-
pings to calculate the transform matrix. In this paper, we
compare Word2API with LSA, PMI, NSD and HAL by
recommending APIs to a query word. We manually label the
relatedness between 50 query words and the recommended
APIs in Section 4.3.3 for evaluation. We use these manually
labeled relationships as the training set. We partition the
query words into ten folds. Each time, we use 45 words and
their related APIs to calculate the transformation matrix,
and then transform the remaining 5 words into the API
space with the matrix to find their related APIs. On average,
the transformation matrix is trained with 3,800 manually
labeled word-API mappings.

API2Vecfreqent uses the frequent 2-itemsets that contain
a word and an API as the labeled word-API mappings
to calculate the transformation matrix. The detail to mine
frequent itemsets is presented in Section 5.3.2. After training,
we transform all the 50 query words into the API space with
the matrix to find their related APIs. For this method, the
training set has 48,961 word-API mappings. We calculate
the transformation matrix with Matlab.

Result. As shown in Fig. 1, API2Vecfreqent is superior to
API2Vecmanual. The small number of manually labeled word-
API mappings may limit the training of API2Vecmanual. For
Word2API, it significantly outperforms the two variants of
API2Vec by up to 0.36 in terms of Precision@1 and ND-
CG@1. We analyze the reason as follows. APIs in different
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Fig. 1: Comparison with API2Vec.
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Fig. 2: Influence on shuffling times.

languages are usually one-to-one mappings, i.e., an API in
the source language is corresponding to a specific API in
the target language. In contrast, the relationship between
words and APIs are many-to-many. In the manually labeled
training set, each word is considered to be related to 86 APIs
on average. Such complex relationship may not be captured
by the two-dimensional transformation matrix in API2Vec.

Conclusion. In the setting of mining word-API relationship-
s, Word2API can better capture the many-to-many map-
pings between words and APIs compare to API2Vec.

S3 INFLUENCE OF SHUFFLING TIMES

S3.1 Shuffling on Large Corpus

Motivation. To increase semantically related collocations,
Word2API repeats the shuffling step ten times to generate
ten shuffled copies of a word-API tuple. This section inves-
tigates the influence of the shuffling times on Word2API.

Method. Initially, we collect 13,883,230 word-API tuples
from the GitHub corpus. For each word-API tuple, we
control the shuffling time from 1 to 20 times, including 1,
5, 10, and 20 times. For example, when the shuffling time is
20, it means we generate 20 shuffled copies of an original
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TABLE 2: Shuffling times for API docu-
ments linking.

Strategy MAP MRR

Shuffle-1 0.368 0.380
Shuffle-5 0.406 0.422
Shuffle-10 0.402 0.433
Shuffle-20 0.416 0.432
Shuffle-1-NonDup 0.354 0.362
Shuffle-5-NonDup 0.393 0.406
Shuffle-10-NonDup 0.402 0.423
Shuffle-20-NonDup 0.410 0.427

word-API tuple. We name this strategy as “Shuffle-20”. It
generates 277,664,600 results for training.

Result. The influence of shuffling times on recommending
APIs for 50 selected query words is shown in Fig. 2(a) and
Fig. 2(b). Clearly, the performance of Shuffle-1 drops from
Precision@5 to Precision@30. When we increase the shuf-
fling times, the performance tends to be similar. Similarly,
Shuffle-1 also slightly drops in terms of NDCG. However,
the differences of different shuffling times are small. The
average difference from NDCG@1 to NDCG@100 between
Shuffle-1 and Shuffle-20 is 0.018. The small differences be-
tween different shuffling times can be also verified on the
task of API documents linking (in Table 2). We use this
task for re-verification, because the oracle of this task is
automatically generated with fewer human biases. Since
“Shuffle-20” significantly increases the training time, we
shuffle each tuple ten times in this study.

Conclusion. Word2API can be improved by shuffling each
word-API tuple multiple times. The performance tends to
be stable when the shuffling times vary from 5 to 20.

S3.2 Shuffling on Small Corpus
Motivation. As a basic characteristic of GitHub, a project
may have many forks or third-party source code [5], leading
to many duplicate code snippets. To better analyze the
influence of shuffling times, in this subsection, we generate
a small corpus by removing the duplications in the large
corpus and analyze the influence of shuffling times on the
small corpus.

Method. We calculate the MD5 value of each word-API
tuple in the large corpus. We remove the duplicate copies of
word-API tuples that have the same MD5 value. In this way,
we obtain 5,488,201 non-duplicate word-API tuples, i.e., the
duplicate rate is 0.605. Then, we train Word2API on the non-
duplicate word-API tuples by shuffling each tuple 1, 5, 10,
20 times, denoted as Shuffle-1-NonDup, Shuffle-5-NonDup,
Shuffle-10-NonDup and Shuffle-20-Nondup respectively.

Result. As shown in Fig. 2(c) and Fig. 2(d), when increasing
the shuffling times, the performance of Word2API slightly
improves, and then reaches a ceiling. When we apply the
vectors generated by these variants on the task of API
documents linking, we can observe similar trends (in Table
2). In addition, by comparing the performance of Word2API
on the large and small corpora in Table 2, we find that the
absence of code duplication negatively affects the Word2API
performance on API documents linking.
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Fig. 3: Influence on the number of iterations.

TABLE 3: The number of iterations for API
documents linking.

Strategy MAP MRR

Word2API-w5-i5 0.402 0.433
Word2API-w5-i10 0.413 0.430
Word2API-w5-i20 0.405 0.420
Word2API-w5-i50 0.412 0.427
Word2API-w50-i5 0.205 0.214
Word2API-w50-i10 0.205 0.211
Word2API-w50-i20 0.194 0.200
Word2API-w50-i50 0.205 0.209

Conclusion. As a machine learning approach, the cor-
pus size influences Word2API in learning word-API re-
lationships. When training Word2API on a small corpus
(5,488,201 non-duplicate word-API tuples), the performance
of Word2API for solving the API documents linking prob-
lem slightly drops.

S4 INFLUENCE ON THE NUMBER OF ITERATIONS

Motivation. This section investigates how the number of
iterations influences Word2API.

Method. By default, the number of iterations of Word2API
is 5. We increase the number of iterations (denoted as i)
by 5, 10, 20, 50 and observe the performance of Word2API
on recommending APIs according to query words. In this
experiment, the default window size (denoted as w) is 5.
Hence, the algorithms include Word2API-w5-i5, Word2API-
w5-i10, Word2API-w5-i20, and Word2API-w5-i50.

Besides, we also set the window size to 50, since the
performance of Word2API sharply drops when the window
size increases from 5 to 50 (see Section 5.2.1). We observe the
influence of the number of iterations on this larger window
size.
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Fig. 4: The average tuple length and the performance.

Result. As shown in Fig. 3(a) and Fig. 3(b), the number
of iterations has little influence on Word2API when the
window size is 5. If we average the differences between
Word2API-w5-i5 and Word2API-w5-i50 for the ranking list
from 1 to 100, the average difference between i = 5 and i =
50 is 0.006 for precision and 0.003 for NDCG. Conversely,
when the window size is set to 50, increasing the number
of iterations decreases the performance of Word2API. How-
ever, such differences do not affect the overall applicability
of Word2API for solving software engineering tasks. When
these variants of Word2API are applied to API documents
linking, the performance of Word2API is stable as the num-
ber of iterations is tuned, as shown in Table 3.

Conclusion. WordAPI is robust to the number of iterations
for software engineering tasks.

S5 INFLUENCE ON THE TUPLE LENGTH

Motivation. This section investigates how the length of
word-API tuples influences Word2API.

Method. Given a query word in the 50 selected ones,
we collect all the word-API tuples containing this word.
We calculate the average length (number of terms) of the
collected word-API tuples, as well as the performance of
Word2API on recommending related APIs for this word.
Then, we observe the correlation between the two variables.

Result. The results are presented in Fig. 4. The x-axis is
the query word. We rank the query words according to the
average tuple length containing each word. The left y-axis
is the value of the average length of tuples. The right y-axis
shows the values of Precision@100 and NDCG@100 with
respect to each query word. We find these query words
are trained on tuples with diverse lengths. The average
length of tuples containing the word “transaction” is 18.98.
In contrast, the word “parse” is trained by many long
tuples. The average length is 105.52. Despite the diverse
lengths, we could not observe a correlation between the
tuple length and the performance. The Spearman correlation
coefficient is -0.022 between the average tuple length and
Precision@100 and 0.026 between the average tuple length
and NDCG@100.

Conclusion. The length of tuples may not be a core factor to
influence the performance of Word2API.
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Fig. 5: Precision and NDCG for API relatedness estimation
and API documents linking.

TABLE 4: MAP and MRR for API relatedness estimation
and API documents linking.

Task Algorithms MAP MRR

API Rel. estimation

LSA 0.210 0.242
PMI 0.259 0.396
NSD 0.293 0.491
HAL 0.301 0.488
Word2API 0.362 0.528

API Doc. linking

VSM 0.232 0.259
WE [6] 0.313 0.354
Word2API 0.402 0.433
VSM+WE [6] 0.340 0.380
VSM+Word2API 0.436 0.469

S6 EVALUATION OVER MORE METRICS

Motivation. To show the robustness of Word2API, we use
precision, NDCG, MAP, and MRR to conduct a thorough
evaluation on the tasks of word-API relatedness estimation
(Section 5) and API documents linking (Section 7).

Method. For word-API relatedness estimation, we select 50
query words to compare Word2API against the baselines,
including LSI, PMI, NSD, and HAL. These algorithms are
evaluated by recommending 100 APIs corresponding to
a query word. For API documents linking, we compare
Word2API against VSM and WE. The algorithms are evalu-
ated by recommending 10 API documents to a question in
Stack Overflow. We show the performance of both the two
tasks on precision, NDCG, MAP, and MRR.

Result. Fig. 5(a) and Fig. 5(b) are the averaged precision
and NDCG for different algorithms on API relatedness
estimation. We show MAP and MRR for this task in Table 4.
Clearly, Word2API outperforms the baselines in terms of all
the evaluation metrics. These metrics evaluate Word2API in
different aspects. Precision and MAP count the percentage
of related APIs in a ranking list. MRR focuses on the position
of the related APIs and NDCG compares the position of the
related APIs with the unrelated ones.

We observe similar results for the task of API documents
linking. We present the performance of different algorithms
for API documents linking in Fig. 5(c), Fig. 5(d) and Table 4.
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In this task, Word2API is superior to VSM and WE over all
the evaluation metrics.

Conclusion. The effectiveness of Word2API in capturing the
semantic relatedness can be verified over diverse evaluation
metrics.

S7 COMPARISON WITH DEEP API LEARNING

In this section, we compare Word2API with the state-of-
the-art algorithm for API sequences recommendation and
discuss the differences between the two algorithms to justify
the application scenario of Word2API.

S7.1 Quantified Comparison
Motivation. Word2API is a component for sematic estima-
tion. We integrate Word2API into a LuceneAPI (Section 6.4.2)
based search framework to show how Word2API works for
practical API recommendation. This method is denoted as
Word2APISearch. We compare Word2APISearch with DeepAPI
[7], an attention-based RNN Encoder-Decoder algorithm for
API sequences recommendation.

Method. DeepAPI learns word-API relationships from word-
API tuples constructed from the GitHub corpus. For a word-
API tuple, DeepAPI takes the words in the word sequence
as input. It encodes and decodes these words with an
RNN network and outputs a set of vectors representing
the related API sequences regarding these words. To train
the RNN network, DeepAPI optimizes the parameters of
RNN by minimizing the differences between the output
API sequence and the actual API sequence in this word-
API tuple. Finally, DeepAPI achieves a set of optimized
parameters. In evaluation, DeepAPI encodes and decodes
the vector of a user query with the optimized RNN and
directly generates API sequences for the query. Gu et al. [7]
published an on-line demo of DeepAPI1 for evaluation.

Word2APISearch integrates Word2API into the widely used
search engine Lucene for practical API sequences recom-
mendation. Word2APISearch first expands a user query into
a combined query with both words and related APIs. It
uses this combined query to search candidate API sequences
from the word-API tuples. Then, Word2APISearch re-ranks the
candidate API sequences by both sematic similarity and text
similarity, and recommends the top ranked API sequences.

Specifically, we use Word2API to calculate the similarity
between a user query and each APIi in Java SE APIs,
denoted as simAPIi . We combine a user query and the
top-10 APIs with the largest simAPIi to form a combined
query qcom. The top-10 APIs are selected as suggested by the
previous study [8]. We search qcom with Lucene to get top
1,000 candidate API sequences in word-API tuples. This step
uses the text information of qcom, i.e., Term Frequency and
Inverted Document Frequency (IDF), to filter low-quality
and noisy API sequences. The words in qcom are used to
match the words split from the API sequences. The APIs in
qcom are used to directly match the APIs in API sequences.

Then, we re-rank the candidate API sequences with the
assistance of the sematic information, i.e., simAPIi . This
process is inspired by Lv. et al. [8]. We do not directly use

1. https://guxd.github.io/deepapi/. Last check June, 2018.

TABLE 5: Performance of DeepAPI and Word2APISearch

ID DeepAPI [7] LuceneAPI Word2APISearch
FR P@5 P@10 FR P@5 P@10 FR P@5 P@10

Q1 2 0.4 0.9 NF 0 0 NF 0 0
Q2 1 1 1 NF 0 0 2 0.8 0.9
Q3 1 1 1 1 1 1 1 1 1
Q4 10 0.1 0.1 1 1 1 1 1 1
Q5 1 1 0.8 NF 0 0 1 1 1
Q6 1 1 1 NF 0 0 1 1 1
Q7 1 1 1 1 1 1 1 1 1
Q8 1 1 0.8 1 1 1 1 1 1
Q9 3 0.4 0.5 NF 0 0 1 0.6 0.4
Q10 1 0.8 0.9 NF 0 0 1 1 0.7
Q11 1 1 1 NF 0 0 1 0.6 0.8
Q12 1 1 0.7 1 0.6 0.6 1 1 1
Q13 1 1 1 5 0.2 0.6 1 1 1
Q14 1 0.8 0.6 1 0.8 0.9 1 1 1
Q15 1 1 0.9 NF 0 0 1 1 1
Q16 3 0.4 0.2 NF 0 0 1 1 0.6
Q17 2 0.2 0.1 NF 0 0 1 1 1
Q18 1 1 1 NF 0 0 1 1 1
Q19 1 1 1 NF 0 0 1 1 1
Q20 2 0.6 0.7 NF 0 0 1 1 0.7
Q21 1 0.6 0.8 1 1 0.7 1 0.6 0.6
Q22 1 1 1 NF 0 0 1 1 1
Q23 1 1 0.8 9 0 0.2 7 0 0.2
Q24 3 0.6 0.7 4 0.4 0.2 1 1 1
Q25 1 1 0.8 7 0 0.1 1 0.4 0.4
Q26 1 0.8 0.8 1 1 1 1 1 1
Q27 1 1 0.9 1 1 1 1 1 1
Q28 1 0.8 0.6 5 0.2 0.1 1 1 1
Q29 1 0.6 0.8 6 0 0.2 1 1 1
Q30 1 1 0.9 4 0.4 0.7 NF 0 0
Avg. 1.6 0.8 0.78 6.767 0.320 0.343 1.9 0.833 0.81

p 1.0 0.65 0.453 <0.01 <0.01 <0.01 * * *

their model, as the original model has several parameters,
which needs to be carefully optimized on different tasks.

We simplify their model as follows. This model ranks a
candidate API sequence by the sum of its sematic similarity
and text similarity to the query [8]. The sematic similarity is
the sum of simAPIi of all the APIs that appear in both the
combined query qcom and the candidate API sequence seq.

simsemantic =

k∑
i=1

simAPIi , APIi appears in qcom and seq. (1)

For the text similarity, the weight of wordi in qcom is
defined as:

simwordi = log(IDFwordi)/

n∑
j=1

log(IDFwordj ), (2)

where n is the number of words in qcom and IDFwordi is the
IDF of wordi. Similar to simsemantic, the text similarity is the
sum of simwordi

of all words that appear in both qcom and
seq. We split seq into words according to their camel style.

simtext =

k∑
i=1

simwordi , wordi appears in qcom and seq. (3)

The final similarity between the user query q and seq is:

sim(q, seq) =
(simsemantic + simtext) ∗Nummatched

Lenseq
, (4)

where Nummatched is the number of matched terms (APIs
and words) in seq and Lenseq is the length of seq.
Nummatched is used to improve the influence of word-API
sequences that can match more terms, as the previous study
[8] assumes APIs that are retrieved by multiple terms more
important. Lenseq is used to lessen the influence of long API
sequences, which can always match more terms.

Result. Table 5 presents the performance of DeepAPI,
LuceneAPI, and Word2APISearch over the human written
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queries. LuceneAPI is the algorithm evaluated in Sec-
tion 6.4.2. Word2APISearch improves the performance of
LuceneAPI by 0.513 and 0.467 in terms of P@5 and P@10
respectively. Hence, it is promising to integrate the semantic
information analyzed by Word2API into a general-purpose
search engine. When comparing Word2APISearch with Deep-
API, we could not observe statistical differences between
the two algorithms. They both achieve the state-of-the-art
results for API sequences recommendation over the real-
world queries. We did not evaluate these algorithms with
the 10,000 automatically constructed queries, as the DeepA-
PI demo was down when we sent our constructed queries.

Conclusion. Word2APISearch performs similar with the state-
of-the-art algorithm DeepAPI.

S7.2 Qualitative Comparison

Motivation. Since Word2APISearch and DeepAPI perform
similar over the real-world queries, we conduct a qualitative
comparison of the two algorithms to provide some insights
on utilizing Word2APISearch.

Method. We analyze the failure cases of Word2APISearch
in recommending APIs, and then discuss the application
scenario of Word2APISearch.

Result. We analyze Word2APISearch in three aspects.
First, Word2APISearch takes a query as bag-of-words. It

misses the knowledge of the order of words in a query.
Hence, Word2APISearch fails to distinguish the query Q1
“convert int to string” from Q2 “convert string to int”. This
is a common problem of bag-of-words based models [8].

Second, Word2APISearch may not well handle some
queries with multiple requirements. For example, the query
Q30 “play the audio clip at the specified absolute URL” has
two requirements, including “play the audio clip” and “at
the specified absolute URL”. When searching this query,
Word2APISearch lowers down the weight (IDF) of the sec-
ond requirement, as “URL” is a common word to describe
“java.net” packages. As a result, Word2APISearch only recom-
mends APIs related to “play the (local) audio clip” instead
of the “on-line” ones.

Third, as a retrieval task, Word2APISearch may suffer from
poor-quality queries, that are far from the human intention.

Despite the above shortcomings, Word2APISearch is still
competitive to used. We discuss the potential advantages of
Word2APISearch by comparing Word2APISearch with DeepAPI.

First, DeepAPI is a deep neural network based method.
The reasons for generating an API sequence is usually
opaque to developers [9]. In contrast, Word2APISearch rec-
ommends API sequences by ranking word-API tuples. Most
parts of Word2APISearch are explainable. Developers could
understand the recommendation results and optimize the
model in different scenarios more easily.

Second, DeepAPI generates API sequences by network
parameters. On the one hand, the generative model DeepA-
PI can infer new API sequences after training on historical
API sequences. This is useful for developers seeking to
learn the new usages of APIs. In this respect, DeepAPI is
superior to Word2API, which only recommends existing
historical API sequences. On the other hand, after manually
examining the generated API sequences by DeepAPI, we

find that some API sequences may not be valid, which
may be a burden in understanding and debugging these
sequences. In this respect, Word2APISearch can retrieve valid
and real-world API sequences. These sequences can be
directly linked to the source code for better understanding.

Conclusion. Compared to DeepAPI, Word2API is useful
in finding real-world API sequences. The recommendation
results are more explainable.

S8 LEARNING ON PROJECT-SPECIFIC APIS
Motivation. This study trains Word2API on Java SE APIs.
Since searching for Java SE APIs has been well studies
by general-purpose search engines, this section investigates
Word2API on learning project-specific words and APIs.

Method. We take the core Lucene APIs as a representative
example of project-specific APIs. On the one hand, Lucene is
widely known to developers. Recommending Lucene APIs
is helpful to set up a general-purpose search engine. On the
other hand, compared to Java SE APIs, core Lucene APIs are
not used in all the Java projects. Searching for Lucene APIs
is more similar to a project-specific search.

In the experiment, we collect the code snippets con-
taining Lucene APIs from the GitHub corpus. Similar to
the process of constructing Java SE word-API tuples, we
construct word-API tuples for core Lucene APIs. In this
process, we collect 94,571 word-API tuples. We generate a
training set by creating ten copies of each word-API tuple
with the shuffling strategy. After running Word2API on the
training set, 3,088 word vectors and 8,279 API vectors are
generated eventually.

In the evaluation, we first evaluate Word2API with 30
human written queries listed in the first three columns of
Table 6. The typical APIs for each query are listed in the
forth column. The first five queries are the general steps to
deploy a Lucene search engine in the Lucene tutorial2. The
remaining queries are selected from the title of top voted
questions in Stack Overflow with the tag “Lucene”. We
select queries according to the following criteria [10]: (1) The
question is a programming task that can be implemented
with core Lucene APIs. (2) The answer to the question
contains Lucene APIs. (3) The title of the question is not the
same with the already selected queries. Then, we expand
the selected queries into API vectors and search word-API
tuples based on the naive framework presented in Section
6.2.3 (Word2APIExp) to highlight the affect of Word2API.
The top-10 results are evaluated by FR, Precision@5, and
Precision@10.

Second, we randomly select 1,000 word-API tuples from
all the 94,571 word-API tuples. We only select 1,000 word-
API tuples, due to the small number of entire Lucene related
tuples. We take the word sequences in the word-API tuples
as queries to search API sequences in the remaining 93,571
word-API tuples. The recommended API sequences are
evaluated based on the BLEU score.

We compare Word2APIExp with LuceneAPI+Comment pro-
posed in Section 6.4.2. LuceneAPI+Comment in this section only
searches Lucene word-API tuples. It matches the queries

2. https://www.tutorialspoint.com/lucene/lucene overview.htm
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TABLE 6: Performance on project-specific search over 30 human written queries. P is short for precision

ID Query (How to/Is there a way for) Question Typical APIs LuceneAPI+Comment Word2APIExp
ID FR P@5 P@10 FR P@5 P@10

L1 analyze the document tutorial StandardAnalyzer#new, Analyzer#tokenstream 1 1 1 1 0.8 0.8
L2 indexing the document tutorial IndexWriterConfig#new, IndexWriter#new,

IndexWriter#addDocument
1 0.8 0.7 1 1 1

L3 build query tutorial BooleanClause#getQuery, QueryParser#parse 1 0.8 0.8 1 0.4 0.6
L4 search query tutorial IndexSearcher#search 1 1 0.8 1 0.8 0.7
L5 render results tutorial Explanation#getSummary, Explanation#getDetails 5 0.2 0.4 1 1 0.8
L6 get a token from a lucene TokenStream 2638200 TokenStream#incrementToken, TermAttribute#term 3 0.4 0.5 1 1 1
L7 keep the whole index in RAM 1293368 RAMDirectory#new NF 0 0 NF 0 0
L8 stem English words with lucene 5391840 EnglishAnalyzer#new, PorterStemmer#stem 3 0.4 0.6 4 0.2 0.5
L9 ignore the special characters 263081 QueryParser#escape 3 0.2 0.1 4 0.4 0.2
L10 incorporate multiple fields in QueryParser 468405 TermQuery#new, BooleanQuery#add,

MultiFieldQueryParser#new
1 0.4 0.4 1 1 1

L11 tokenize a string 6334692 Analyzer#tokenStream 1 0.8 0.9 NF 0 0
L12 (use) different analyzers for each field 2843124 PerFieldAnalyzerWrapper#new NF 0 0 NF 0 0
L13 load default list of stopwords 17527741 StanardAnalyzer#loadStopwordSet 5 0.2 0.4 1 0.8 0.5
L14 sort lucene results by field value 497609 Search#sort, Sort#getSort 2 0.4 0.5 1 0.8 0.5
L15 extract tf-idf vector in lucene 9189179 IndexReader#docFreq, IndexReader#getTermVector,

TFIDFSimilarity#idf
3 0.4 0.4 2 0.8 0.9

L16 backup lucene index 5897784 FSDirectory#copy 3 0.2 0.1 NF 0 0
L17 find all lucene documents having a certain field 3710089 QueryParser#SetAllowLeadingWildcard NF 0 0 NF 0 0
L18 (calculate) precision/recall in lucene 7170854 ConfusionMatrixGenerator#getPrecision,

ConfusionMatrixGenerator#getRecall
1 0.8 0.5 1 0.8 0.4

L19 search across all the fields 15170097 TermQuery#new, BooleanQuery#add,
MultiFieldQueryParser#new

NF 0 0 5 0.2 0.4

L20 multi-thread with lucene 9317981 MultiReader#new, MultiSearcherThread#start 3 0.4 0.3 1 0.4 0.2
L21 get all terms for a lucene field in 15290980 Fields#terms, Term#text 7 0 0.1 1 1 1
L22 update a lucene index 476231 Document#add, IndexWriter#addDocument 2 0.6 0.6 2 0.8 0.9
L23 adding tokens to a TokenStream 17476674 TokenStream#incrementToken,

PositionIncrementAttribute#setPositionIncrement
1 1 0.8 1 0.8 0.8

L24 finding the num of documents in a lucene index 442463 IndexReader#numDocs 1 0.8 0.9 1 0.8 0.9
L25 make lucene be case-insensitive 5512803 StringUtil#startsWithIgnoreCase, LowerCaseFilter#new 3 0.4 0.4 2 0.4 0.4
L26 boost factor (of) MultiFieldQueryParser 551724 MultiFieldQueryParser#new, Query#setBoost 3 0.2 0.2 1 0.4 0.3
L27 list unique terms from a specific field 654155 Term#iterator, TermsEnum#next 8 0 0.1 1 1 0.8
L28 index token bigrams in lucene 8910008 NGramTokenizer#new NF 0 0 NF 0 0
L29 delete or update a doc 2634873 IndexWriter#update, IndexReader#removeDocument 3 0.4 0.5 1 0.8 0.7
L30 query lucene with like operator 3307890 WildcardQuery#new, PrefixQuery#new NF 0 0 2 0.4 0.4
Avg. 4.367 0.393 0.4 3.467 0.56 0.523
p 0.067 0.029 0.041 * * *
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Fig. 6: BLEU score on project-specific search.

with the words in the word sequence and API sequence
of each word-API tuple.

Result. Table 6 shows the results on human written queries.
For FR, the average position of the first related API se-
quence recommended by Word2APIExp ranks 0.9 higher
than LuceneAPI+Comment. For precision, Word2APIExp out-
performs LuceneAPI+Comment by 0.16 and 0.123 in terms of
Precision@5 and Precision@10 respectively. The results on
precision pass the Wilconox signed rank test with p-values
< 0.05. Similarly, we can also observe a significant improve-
ment in Fig. 6 in terms of the BLEU score over the 1,000 auto-
matically constructed queries. Hence, Word2APIExp outper-
forms LuceneAPI+Comment in recommending project-specific
APIs over precision and the BLEU score.

Despite the promising results, we analyze the failure
cases of Word2APIExp to provide some insights in using
Word2APIExp. The first failure reason is the small size of
vocabulary in the training set. Word2API generates 3,088
word vectors. We find some words in the query never occur
in the training set. For example, for the query L11 “tokenize

a string”, Word2API cannot generate a vector for “tokenize”,
leading to a failure result. One direction to solve this prob-
lem is to infer the software-specific morphological forms of
the non-existence words [11], e.g., “token” and “tokenize”
come from the same root. We may use the vector of “to-
ken” to calculate similarity. Another direction is to combine
LuceneAPI+Comment with Word2API, as LuceneAPI+Comment finds
the right APIs for this query.

The second failure reason is the lack of the diversity
of word-API usages. The training set is 100 times smaller
than the Java SE training set. Some usages between words
and APIs may not exist in the method comments and API
calls. For example, we could not observe obvious usages
of the word “RAM” to describe “RAMDirectory#new” re-
lated APIs (query L7) in the word-API tuples. Although as
discussed in Section S3, the shuffling strategy improves the
ability of Word2API in learning existing word-API tuples,
the non-existence word-API usages may lead to a failure.

Conclusion. Word2API can learn word-API relationships
for project-specific APIs. A searching framework with the
Word2API-generated queries can provide more precise re-
sults than a general-purpose search engine.

S9 API DOCUMENTS LINKING WITH JBAKER

Motivation. Word2API is useful for API documents linking,
e.g. linking the questions in Stack Overflow to their relat-
ed API documents. This section compares Word2API with
JBaker on this task, one of the state-of-the-art algorithms of
linking on-line resources (e.g., Stack Overflow questions) to
API documents. JBaker represents a set of algorithms that
trace the exact type (the fully qualified name) of ambiguous
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TABLE 7: Performance of JBaker and baselines.

#Exp Algorithms MAP MRR

Group 1
JBaker [12] 0.337 0.344
JBaker-code 0.448 0.458

Group 2
VSM 0.195 0.195
WE [6] 0.190 0.187
Word2API 0.338 0.350

Group 3
JBaker+Word2API 0.501 0.514
GoogleSpecification 0.501 0.509

APIs in code snippets. For example, JBaker can deduce
whether the ambiguous API “Data#getHours” in a code
snippet refers to “java.util.Data” or “java.sql.Data”. Since
each API document is usually illustrating an unique API
type, JBaker is able to link every ambiguous API in the code
snippet to its related API documents.

Method. We use JBaker for API documents linking. For a
question in Stack Overflow, we extract the code snippet
in the question. We input the code snippet to JBaker for
identifying the exact API type of every ambiguous API in
the snippet. JBaker analyzes ambiguous APIs based on an
oracle. The oracle is a database containing a large number
of API sequences used in practice. When JBaker encounters
an ambiguous API, it matches the ambiguous API with
the API sequences in the oracle to deduce its possible API
types. JBaker assumes that APIs in the same code snippet
usually belong to the same API type. Hence, it can find the
exact type of an ambiguous API by identifying the common
API types of all ambiguous APIs. Based on the deduced
API type, we link ambiguous APIs to API documents. If
JBaker cannot find the exact type of an ambiguous API,
it recommends more than one results. Thus, we link this
ambiguous API to more than one API document. In this
study, we use the API sequences in the word-API tuples as
the oracle. We reproduce JBaker by ourselves.

After linking every ambiguous API with API documents,
we rank these API documents for the task of API documents
linking. We define the score of an API document to a
question as the score of all the APIs in the question that
are linked to this API document.

scoredoc =

n∑
i=1

scoredocAPIi
, (5)

where n is the number of APIs that are linked to this API
document by JBaker. Since JBaker may link an API to more
than one API document, the score of an API is defined as:

scoredocAPIi
= 1/ki, (6)

where ki is the number of API documents that JBaker links
APIi to. Based on scoredoc, we recommend API documents
for a question in Stack Overflow.

Result. As described in Section 7.3.2, we collect 278 ques-
tions from Stack Overflow as a testing set for evaluation.
Table 7 is the performance of the algorithms.

For the first group of experiments, we evaluate JBaker on
the 278 questions. The performance of JBaker is 0.337 and
0.344 in terms of MAP and MRR respectively. Recalling that
Word2API achieves MAP of 0.402 and MRR of 0.433 on the
same testing set, Word2API outperforms JBaker over the 278

questions. We reason the JBaker’s performance as follows.
On the one hand, despite JBaker can correctly link APIs
in code snippets to API documents, these API documents
may not be the correct ones to solve the problems, as the
submitters may already read these API documents before
submitting the question. On the other hand, not all the
questions in Stack Overflow contains code snippets. As a
statistic of the 278 questions, 70 (25.2%) of them have no
code snippets. JBaker may recommend nothing for these
questions. If we remove these 70 questions, the performance
of JBaker-code on the remaining 208 questions are signifi-
cantly improved as shown in the 2nd line of Table 7.

However, we think the removed 70 questions are more
difficult to analyze. Since these questions only contain nat-
ural language words, the gaps between words in questions
and APIs in API documents are more prominent. For the
second group of experiments, we run the algorithms in Section
7.2 on the 70 questions, including VSM, WE, and Word2API.
The performance of all the algorithms drops, even though
Word2API still outperforms the others by 0.143 to 0163 over
distinct metrics. Hence, Word2API can better bridge the
sematic gaps than the baselines on some “hard” instances.

Although JBaker may have difficulty in analyzing ques-
tions without code snippets, JBaker is useful to analyze
the API-API relationship between code snippets and API
documents. For the third group of experiments, we combine
the word-API relationship analyzed by Word2API and the
API-API relationship analyzed by JBaker for more precise
API documents linking. For a question, we assign two
scores to each API document. The scores are calculated by
Word2API and JBaker. All the API documents are ranked
according to the sum of the two scores (Word2API+JBaker).
If a question has no code snippets, JBaker assigns zero to
all the API documents. In Table 7, both MAP and MRR of
Word2API+JBaker over the 278 questions are significantly
improved, i.e., 0.501 for MAP and 0.514 for MRR.

In addition, we compare Word2API+JBaker with
Google, a state-of-the-art search engine. We take the
278 questions as queries and manually search Java
API documents with Google by rewriting a query as
‘query site:https://docs.oracle.com/javase/8/docs/api/’.
This method is denoted as GoogleSpecification. We find Google
provides a strong baseline for information retrieval tasks
in software engineering. For API documents linking, the
results of GoogleSpecification and Word2API+JBaker are quite
close. According to classical information retrieval textbooks
[13], a mature search engine may leverage many state-
of-the-art techniques to optimize the search results, such
as page rank, topic model, query expansion, and query
feedback. Hence, the word-API and API-API knowledge
captured by Word2API+JBaker is competitive as a combi-
nation of many retrieval techniques in analyzing APIs.

Conclusion. Word2API outperforms the baselines over dif-
ferent types of questions. The word-API relationship ana-
lyzed by Word2API is valuable to improve the algorithms
for API documents linking.
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