#' Generate posterior distributions weighted across models #' #' Extract posterior samples of parameters, weighted across models. #' Weighting is done by comparing posterior model probabilities, via \code{\link{bayesfactor_models}}. #' #' @param missing An optional numeric value to use if a model does not contain a parameter that appears in other models. Defaults to 0. #' @param prior_odds Optional vector of prior odds for the models compared to the first model (or the denominator, for \code{BFBayesFactor} objects). #' @inheritParams bayesfactor_models #' @inheritParams bayesfactor_parameters #' #' @details #' Note that across models some parameters might play different roles. For example, #' the parameter \code{A} plays a different role in the model \code{Y ~ A + B} (where it is a main effect) #' than it does in the model \code{Y ~ A + B + A:B} (where it is a simple effect). In many cases centering #' of predictors (mean subtracting for continuous variables, and effects coding via \code{contr.sum} or #' orthonormal coding via {\code{\link{contr.bayes}}} for factors) can reduce this issue. In any case #' you should be mindful of this issue. #' \cr\cr #' See \code{\link{bayesfactor_models}} details for more info on passed models. #' \cr\cr #' Note that for \code{BayesFactor} models, posterior samples cannot be generated from intercept only models. #' \cr\cr #' This function is similar in function to \code{brms::\link[brms]{posterior_average}}. #' #' @return A data frame with posterior distributions (weighted across models) . #' #' @seealso \code{\link{bayesfactor_inclusion}} for Bayesian model averaging. #' #' @examples #' \donttest{ #' if (require("rstanarm") && require("see")) { #' stan_m0 <- stan_glm(extra ~ 1, data = sleep, #' family = gaussian(), #' refresh=0, #' diagnostic_file = file.path(tempdir(), "df0.csv")) #' #' stan_m1 <- stan_glm(extra ~ group, data = sleep, #' family = gaussian(), #' refresh=0, #' diagnostic_file = file.path(tempdir(), "df1.csv")) #' #' #' res <- weighted_posteriors(stan_m0, stan_m1) #' #' plot(eti(res)) #' } #' #' # With BayesFactor and brms #' if (require("BayesFactor") && require("brms")) { #' BFmods <- anovaBF(extra ~ group + ID, sleep, whichRandom = "ID") #' #' res <- weighted_posteriors(BFmods)[1:3] #' plot(eti(res)) #' #' # Compare to brms::posterior_average #' fit1 <- brm(rating ~ treat + period + carry, #' data = inhaler, #' save_all_pars = TRUE) #' fit2 <- brm(rating ~ period + carry, #' data = inhaler, #' save_all_pars = TRUE) #' #' res_BT <- weighted_posteriors(fit1, fit2) #' res_brms <- brms::posterior_average(fit1, fit2, #' weights = "marglik", missing = 0)[, 1:4] #' #' plot(eti(res_BT)) #' plot(eti(res_brms)) #' } #' } #' @references #' \itemize{ #' \item Clyde, M., Desimone, H., & Parmigiani, G. (1996). Prediction via orthogonalized model mixing. Journal of the American Statistical Association, 91(435), 1197-1208. #' \item Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A conceptual introduction to Bayesian Model Averaging. \doi{10.31234/osf.io/wgb64} #' \item Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic bulletin & review, 25(1), 102-113. #' \item van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2019). A cautionary note on estimating effect size. #' } #' #' @export weighted_posteriors <- function(..., prior_odds = NULL, missing = 0, verbose = TRUE) { UseMethod("weighted_posteriors") } #' @export #' @rdname weighted_posteriors #' @importFrom insight get_parameters weighted_posteriors.stanreg <- function(..., prior_odds = NULL, missing = 0, verbose = TRUE, effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL){ Mods <- list(...) effects <- match.arg(effects) component <- match.arg(component) # Get Bayes factors BFMods <- bayesfactor_models(..., denominator = 1, verbose = verbose) # Compute posterior model probabilities prior_odds <- c(1, prior_odds) posterior_odds <- prior_odds * BFMods$BF postProbs <- posterior_odds / sum(posterior_odds) # Compute weighted number of samples nsamples <- min(sapply(Mods, .total_samps)) weighted_samps <- round(nsamples * postProbs) # extract parameters params <- lapply(Mods, insight::get_parameters, effects = effects, component = component, parameters = parameters) res <- .weighted_posteriors(params, weighted_samps, missing) attr(res, "weights") <- data.frame(Model = BFMods$Model, weights = weighted_samps) return(res) } #' @export #' @rdname weighted_posteriors weighted_posteriors.brmsfit <- weighted_posteriors.stanreg #' @export #' @rdname weighted_posteriors weighted_posteriors.BFBayesFactor <- function(..., prior_odds = NULL, missing = 0, verbose = TRUE){ Mods <- c(...) # Get Bayes factors BFMods <- bayesfactor_models(Mods, verbose = verbose) # Compute posterior model probabilities prior_odds <- c(1, prior_odds) posterior_odds <- prior_odds * BFMods$BF postProbs <- posterior_odds / sum(posterior_odds) # Compute weighted number of samples nsamples <- 4000 weighted_samps <- round(nsamples * postProbs) # extract parameters intercept_only <- which(BFMods$Model == "1") params <- vector(mode = "list", length = nrow(BFMods)) for (m in seq_along(params)) { if (length(intercept_only) && m == intercept_only) { warning( "Cannot sample from BFBayesFactor model with intercept only (model prob = ", round(postProbs[m], 3) * 100, "%).\n", "Ommiting the intercept model.", call. = FALSE ) next } else if (m == 1) { # If the model is the "den" model params[[m]] <- BayesFactor::posterior(1 / Mods[1], iterations = nsamples, progress = FALSE) } else { params[[m]] <- BayesFactor::posterior( Mods[m - 1], iterations = nsamples, progress = FALSE ) } } params <- lapply(params, as.data.frame) res <- .weighted_posteriors(params, weighted_samps, missing) attr(res, "weights") <- data.frame(Model = BFMods$Model, weights = weighted_samps) return(res) } .weighted_posteriors <- function(params, weighted_samps, missing) { par_names <- unique(unlist(sapply(params, colnames), recursive = TRUE)) # remove empty (0 sample) models params <- params[weighted_samps != 0] weighted_samps <- weighted_samps[weighted_samps != 0] for (m in seq_along(weighted_samps)) { temp_params <- params[[m]] i <- sample(nrow(temp_params),size = weighted_samps[m]) temp_params <- temp_params[i, ,drop = FALSE] # If any parameters not estimated in the model, they are assumed to be 0 (the default value of `missing`) missing_pars <- setdiff(par_names, colnames(temp_params)) temp_params[, missing_pars] <- missing params[[m]] <- temp_params } # combine all do.call("rbind", params) } #' @keywords internal #' @importFrom insight find_algorithm .total_samps <- function(mod){ x <- insight::find_algorithm(mod) x$chains * (x$iterations - x$warmup) }