https://github.com/open-mmlab/Amphion
Tip revision: a4c23e2e1f15e4be0b0c7194e6b69a82a4bb4a07 authored by Xueyao Zhang on 18 December 2023, 14:14:33 UTC
Amphion v0.1 Release (#39)
Amphion v0.1 Release (#39)
Tip revision: a4c23e2
__init__.py
# This code from https://github.com/jaywalnut310/vits/
import numpy as np
import torch
from .monotonic_align.core import maximum_path_c
def maximum_path(neg_cent, mask):
"""Cython optimized version.
neg_cent: [b, t_t, t_s]
mask: [b, t_t, t_s]
"""
device = neg_cent.device
dtype = neg_cent.dtype
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
path = np.zeros(neg_cent.shape, dtype=np.int32)
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
return torch.from_numpy(path).to(device=device, dtype=dtype)
