# This file is a part of Julia. License is MIT: https://julialang.org/license using Test, Random ######## Utilities ########### # Generate an array similar to A[indx1, indx2, ...], but only call # getindex with scalar-valued indices. This will be safe even if # `getindex` someday calls `view`. # The "nodrop" variant does not drop any dimensions (not even trailing ones) function Agen_nodrop(A::AbstractArray, I...) irep = replace_colon(A, I) _Agen(A, ensure_iterable(irep)...) end # This drops scalar dimensions function Agen_slice(A::AbstractArray, I...) irep = replace_colon(A, I) B = _Agen(A, ensure_iterable(irep)...) sd = Int[] for i = 1:length(I) if isa(I[i], Real) push!(sd, i) end end dropdims(B, dims=sd) end _Agen(A, i1) = [A[j1] for j1 in i1] _Agen(A, i1, i2) = [A[j1,j2] for j1 in i1, j2 in i2] _Agen(A, i1, i2, i3) = [A[j1,j2,j3] for j1 in i1, j2 in i2, j3 in i3] _Agen(A, i1, i2, i3, i4) = [A[j1,j2,j3,j4] for j1 in i1, j2 in i2, j3 in i3, j4 in i4] _Agen(A, i1, i2, i3, i4, i5) = [A[j1,j2,j3,j4,j5] for j1 in i1, j2 in i2, j3 in i3, j4 in i4, j5 in i5] _Agen(A, i1, i2, i3, i4, i5, i6) = [A[j1,j2,j3,j4,j5,j6] for j1 in i1, j2 in i2, j3 in i3, j4 in i4, j5 in i5, j6 in i6] function replace_colon(A::AbstractArray, I) Iout = Vector{Any}(undef, length(I)) I == (:,) && return (1:length(A),) for d = 1:length(I) Iout[d] = isa(I[d], Colon) ? (1:size(A,d)) : I[d] end (Iout...,) end ensure_iterable(::Tuple{}) = () ensure_iterable(t::Tuple{Union{Number, CartesianIndex}, Vararg{Any}}) = ((t[1],), ensure_iterable(Base.tail(t))...) ensure_iterable(t::Tuple{Any, Vararg{Any}}) = (t[1], ensure_iterable(Base.tail(t))...) index_ndims(t::Tuple) = tup2val(Base.index_ndims(t)) tup2val(::NTuple{N}) where {N} = Val(N) # To avoid getting confused by manipulations that are implemented for SubArrays, # it's good to copy the contents to an Array. This version protects against # `similar` ever changing its meaning. function copy_to_array(A::AbstractArray) Ac = Array{eltype(A)}(undef, size(A)) copyto!(Ac, A) end # Discover the highest dimension along which the values in A are # separated by a single increment. If A was extracted via getindex # from reshape(1:N, ...), this is equivalent to finding the highest # dimension of the SubArray consistent with a single stride in the # parent array. function single_stride_dim(A::Array) ld = 0 while ld < ndims(A) # Collapse all dimensions up to & including ld+1 into the first dimension shp = [prod(size(A)[1:ld+1])] for j = ld+2:ndims(A) push!(shp, size(A,j)) end Ar = reshape(A, shp...) # Compute the diff along dimension 1 if size(Ar, 1) > 1 indices = map(d->1:size(Ar,d), [1:ndims(Ar);]) indicesp = copy(indices); indicesp[1] = 2:size(Ar,1) indicesm = copy(indices); indicesm[1] = 1:size(Ar,1)-1 dA = Ar[indicesp...] - Ar[indicesm...] ustride = unique(dA[:]) if length(ustride) == 1 # is it a single stride? ld += 1 else break end else ld += 1 end end ld end single_stride_dim(@nospecialize(A)) = single_stride_dim(copy_to_array(A)) # Testing equality of AbstractArrays, using several different methods to access values function test_cartesian(@nospecialize(A), @nospecialize(B)) isgood = true for (IA, IB) in zip(eachindex(A), eachindex(B)) if A[IA] != B[IB] @show IA IB A[IA] B[IB] isgood = false break end end if !isgood @show A @show B error("Mismatch") end end function test_linear(@nospecialize(A), @nospecialize(B)) length(A) == length(B) || error("length mismatch") isgood = true for (iA, iB) in zip(1:length(A), 1:length(B)) if A[iA] != B[iB] isgood = false break end end if !isgood @show A @show A.indices @show B error("Mismatch") end end # "mixed" means 2 indices even for N-dimensional arrays test_mixed(::AbstractArray{T,1}, ::Array) where {T} = nothing test_mixed(::AbstractArray{T,2}, ::Array) where {T} = nothing test_mixed(A, B::Array) = _test_mixed(A, reshape(B, size(A))) function _test_mixed(@nospecialize(A), @nospecialize(B)) m = size(A, 1) n = size(A, 2) isgood = true for J in CartesianIndices(size(A)[2:end]), i in 1:m if A[i,J] != B[i,J] isgood = false break end end if !isgood @show A @show B error("Mismatch") end nothing end function test_bounds(@nospecialize(A)) @test_throws BoundsError A[0] @test_throws BoundsError A[end+1] trailing2 = ntuple(x->1, max(ndims(A)-2, 0)) trailing3 = ntuple(x->1, max(ndims(A)-3, 0)) @test_throws BoundsError A[1, 0, trailing2...] @test_throws BoundsError A[1, end+1, trailing2...] @test_throws BoundsError A[1, 1, 0, trailing3...] @test_throws BoundsError A[1, 1, end+1, trailing3...] @test_throws BoundsError A[0, 1, trailing2...] @test_throws BoundsError A[end+1, 1, trailing2...] @test_throws BoundsError A[0, 1, 1, trailing3...] @test_throws BoundsError A[end+1, 1, 1, trailing3...] @test_throws BoundsError A[1, 0, 1, trailing3...] @test_throws BoundsError A[1, end+1, 1, trailing3...] @test_throws BoundsError A[1, 0] @test_throws BoundsError A[1, end+1] @test_throws BoundsError A[1, 1, 0] @test_throws BoundsError A[1, 1, end+1] @test_throws BoundsError A[0, 1] @test_throws BoundsError A[end+1, 1] @test_throws BoundsError A[0, 1, 1] @test_throws BoundsError A[end+1, 1, 1] @test_throws BoundsError A[1, 0, 1] @test_throws BoundsError A[1, end+1, 1] end function dim_break_linindex(I) i = 1 while i <= length(I) && !isa(I[i], Vector{Int}) i += 1 end i - 1 end function runsubarraytests(A::Array, I...) # Direct test of linear indexing inference C = Agen_nodrop(A, I...) ld = min(single_stride_dim(C), dim_break_linindex(I)) S = view(A, I...) if Base.iscontiguous(S) @test S.stride1 == 1 end test_linear(S, C) test_cartesian(S, C) test_mixed(S, C) end function runsubarraytests(@nospecialize(A), I...) # When A was created with view, we have to check bounds, since some # of the "residual" dimensions have size 1. It's possible that we # need dedicated tests for view. for d = 1:length(I)-1 if !isa(I[d], Colon) && any(I[d] .> size(A,d)) return nothing end end if !isa(I[end], Colon) && any(I[end] .> prod(size(A)[length(I):end])) return nothing end AA = copy_to_array(A) # Direct test of linear indexing inference C = Agen_nodrop(AA, I...) Cld = ld = min(single_stride_dim(C), dim_break_linindex(I)) Cdim = AIindex = 0 while Cdim <= Cld && AIindex < length(A.indices) AIindex += 1 if isa(A.indices[AIindex], Real) ld += 1 else Cdim += 1 end end local S try S = view(A, I...) catch @show typeof(A) @show A.indices @show I rethrow() end test_linear(S, C) test_cartesian(S, C) test_mixed(S, C) end # indexN is a cartesian index, indexNN is a linear index for 2 dimensions, and indexNNN is a linear index for 3 dimensions function runviews(SB::AbstractArray, indexN, indexNN, indexNNN) @assert ndims(SB) > 2 for i3 in indexN, i2 in indexN, i1 in indexN runsubarraytests(SB, i1, i2, i3, ntuple(x->1, max(ndims(SB)-3, 0))...) end for i2 in indexN, i1 in indexN runsubarraytests(SB, i1, i2, ntuple(x->1, max(ndims(SB)-2, 0))...) end for i1 in indexNNN runsubarraytests(SB, i1) end end function runviews(SB::AbstractArray{T, 3} where T, indexN, indexNN, indexNNN) @assert ndims(SB) > 2 for i3 in indexN, i2 in indexN, i1 in indexN runsubarraytests(SB, i1, i2, i3) end for i2 in indexN, i1 in indexN runsubarraytests(SB, i1, i2, 1) end for i1 in indexNNN runsubarraytests(SB, i1) end end function runviews(SB::AbstractArray{T,2}, indexN, indexNN, indexNNN) where T for i2 in indexN, i1 in indexN runsubarraytests(SB, i1, i2) end for i1 in indexNN runsubarraytests(SB, i1) end end function runviews(SB::AbstractArray{T,1}, indexN, indexNN, indexNNN) where T for i1 in indexN runsubarraytests(SB, i1) end end runviews(SB::AbstractArray{T,0}, indexN, indexNN, indexNNN) where {T} = nothing ######### Tests ######### testfull = Bool(parse(Int,(get(ENV, "JULIA_TESTFULL", "0")))) ### Views from Arrays ### index5 = (1, :, 2:5, [4,1,5], reshape([2]), view(1:5,[2 3 4 1])) # all work with at least size 5 index25 = (3, :, 2:11, [19,9,7], reshape([10]), view(1:25,[19 15; 4 24])) index125 = (113, :, 85:121, [99,14,103], reshape([72]), view(1:125,reshape([25,4,102,67], 1, 2, 2))) if testfull let A = copy(reshape(1:5*7*11, 11, 7, 5)) runviews(A, index5, index25, index125) end end ### Views from views ### # "outer" indices create snips that have at least size 5 along each dimension, # with the exception of Int-slicing oindex = (:, 6, 3:7, reshape([12]), [8,4,6,12,5,7], [3:7 1:5 2:6 4:8 5:9]) _ndims(::AbstractArray{T,N}) where {T,N} = N _ndims(x) = 1 if testfull let B = copy(reshape(1:13^3, 13, 13, 13)) for o3 in oindex, o2 in oindex, o1 in oindex viewB = view(B, o1, o2, o3) runviews(viewB, index5, index25, index125) end end end if !testfull let B = copy(reshape(1:13^3, 13, 13, 13)) for oind in ((:,:,:), (:,:,6), (:,6,:), (6,:,:), (:,3:7,:), (3:7,:,:), (3:7,6,:), (3:7,6,0x6), (6,UInt(3):UInt(7),3:7), (13:-2:1,:,:), ([8,4,6,12,5,7],:,3:7), (6,CartesianIndex.(6,[8,4,6,12,5,7])), (CartesianIndex(13,6),[8,4,6,12,5,7]), (1,:,view(1:13,[9,12,4,13,1])), (view(1:13,[9,12,4,13,1]),2:6,4), ([1:5 2:6 3:7 4:8 5:9], :, 3)) runsubarraytests(B, oind...) viewB = view(B, oind...) runviews(viewB, index5, index25, index125) end end end # issue #11289 x11289 = randn(5,5) @test isempty(view(x11289, Int[], :)) @test isempty(view(x11289, [2,5], Int[])) @test isempty(view(x11289, Int[], 2)) ####### "Classical" tests ####### # Tests where non-trailing dimensions are preserved A = copy(reshape(1:120, 3, 5, 8)) sA = view(A, 2:2, 1:5, :) @test @inferred(strides(sA)) == (1, 3, 15) @test parent(sA) == A @test parentindices(sA) == (2:2, 1:5, Base.Slice(1:8)) @test Base.parentdims(sA) == [1:3;] @test size(sA) == (1, 5, 8) @test axes(sA) === (Base.OneTo(1), Base.OneTo(5), Base.OneTo(8)) @test sA[1, 2, 1:8][:] == [5:15:120;] sA[2:5:end] .= -1 @test all(sA[2:5:end] .== -1) @test all(A[5:15:120] .== -1) @test @inferred(strides(sA)) == (1,3,15) @test stride(sA,3) == 15 @test stride(sA,4) == 120 test_bounds(sA) sA = view(A, 1:3, 1:5, 5) @test Base.parentdims(sA) == [1:2;] sA[1:3,1:5] .= -2 @test all(A[:,:,5] .== -2) fill!(sA, -3) @test all(A[:,:,5] .== -3) sA[:] .= 4 @test all(A[:,:,5] .== 4) @test @inferred(strides(sA)) == (1,3) test_bounds(sA) sA = view(A, 1:3, 3:3, 2:5) @test Base.parentdims(sA) == [1:3;] @test size(sA) == (3,1,4) @test axes(sA) === (Base.OneTo(3), Base.OneTo(1), Base.OneTo(4)) @test sA == A[1:3,3:3,2:5] @test sA[:] == A[1:3,3,2:5][:] test_bounds(sA) sA = view(A, 1:2:3, 1:3:5, 1:2:8) @test Base.parentdims(sA) == [1:3;] @test @inferred(strides(sA)) == (2,9,30) @test sA[:] == A[1:2:3, 1:3:5, 1:2:8][:] # issue #8807 @test view(view([1:5;], 1:5), 1:5) == [1:5;] # Test with mixed types @test sA[:, Int16[1,2], big(2)] == [31 40; 33 42] test_bounds(sA) sA = view(A, 1:1, 1:5, [1 3; 4 2]) @test ndims(sA) == 4 @test axes(sA) === (Base.OneTo(1), Base.OneTo(5), Base.OneTo(2), Base.OneTo(2)) sA = view(A, 1:2, 3, [1 3; 4 2]) @test ndims(sA) == 3 @test axes(sA) === (Base.OneTo(2), Base.OneTo(2), Base.OneTo(2)) # logical indexing #4763 A = view([1:10;], 5:8) @test A[A.<7] == view(A, A.<7) == [5, 6] @test Base.unsafe_getindex(A, A.<7) == [5, 6] B = reshape(1:16, 4, 4) sB = view(B, 2:3, 2:3) @test sB[sB.>8] == view(sB, sB.>8) == [10, 11] @test Base.unsafe_getindex(sB, sB.>8) == [10, 11] # Tests where dimensions are dropped A = copy(reshape(1:120, 3, 5, 8)) sA = view(A, 2, :, 1:8) @test parent(sA) == A @test parentindices(sA) == (2, Base.Slice(1:5), 1:8) @test Base.parentdims(sA) == [2:3;] @test size(sA) == (5, 8) @test axes(sA) === (Base.OneTo(5), Base.OneTo(8)) @test @inferred(strides(sA)) == (3,15) @test sA[2, 1:8][:] == [5:15:120;] @test sA[:,1] == [2:3:14;] @test sA[2:5:end] == [5:15:110;] sA[2:5:end] .= -1 @test all(sA[2:5:end] .== -1) @test all(A[5:15:120] .== -1) test_bounds(sA) sA = view(A, 1:3, 1:5, 5) @test Base.parentdims(sA) == [1:2;] @test size(sA) == (3,5) @test axes(sA) === (Base.OneTo(3),Base.OneTo(5)) @test @inferred(strides(sA)) == (1,3) test_bounds(sA) sA = view(A, 1:2:3, 3, 1:2:8) @test Base.parentdims(sA) == [1,3] @test size(sA) == (2,4) @test axes(sA) === (Base.OneTo(2), Base.OneTo(4)) @test @inferred(strides(sA)) == (2,30) @test sA[:] == A[sA.indices...][:] test_bounds(sA) let a = [5:8;] @test parent(a) == a @test parentindices(a) == (1:4,) end # issue #6218 - logical indexing A = rand(2, 2, 3) msk = fill(true, 2, 2) msk[2,1] = false sA = view(A, :, :, 1) sA[msk] .= 1.0 @test sA[msk] == fill(1, count(msk)) # bounds checking upon construction; see #4044, #10296 @test_throws BoundsError view(1:10, 8:11) A = reshape(1:20, 5, 4) sA = view(A, 1:2, 1:3) @test_throws BoundsError view(sA, 1:3, 1:3) @test_throws BoundsError view(sA, 1:2, 1:4) view(sA, 1:2, 1:2) @test_throws BoundsError view(A, 17:23) view(A, 17:20) # Linear indexing by one multidimensional array: A = reshape(1:120, 3, 5, 8) sA = view(A, :, :, :) @test sA[[72 17; 107 117]] == [72 17; 107 117] @test sA[[99 38 119 14 76 81]] == [99 38 119 14 76 81] @test sA[[fill(1, (2, 2, 2)); fill(2, (2, 2, 2))]] == [fill(1, (2, 2, 2)); fill(2, (2, 2, 2))] sA = view(A, 1:2, 2:3, 3:4) @test sA[(1:8)'] == [34 35 37 38 49 50 52 53] @test sA[[1 2 4 4; 6 1 1 4]] == [34 35 38 38; 50 34 34 38] # issue #11871 let a = fill(1., (2,2)), b = view(a, 1:2, 1:2) b[2] = 2 @test b[2] === 2.0 end # issue #15138 let a = [1,2,3], b = view(a, UInt(1):UInt(2)) @test b == view(a, UInt(1):UInt(2)) == view(view(a, :), UInt(1):UInt(2)) == [1,2] end let A = reshape(1:4, 2, 2), B = view(A, :, :) @test parent(B) === A @test parent(view(B, 0x1, :)) === parent(view(B, 0x1, :)) === A end # issue #15168 let A = rand(10), sA = view(copy(A), :) @test sA[Int16(1)] === sA[Int32(1)] === sA[Int64(1)] === A[1] permute!(sA, Vector{Int16}(1:10)) @test A == sA end # the following segfaults with LLVM 3.8 on Windows, ref #15417 @test Array(view(view(reshape(1:13^3, 13, 13, 13), 3:7, 6:6, :), 1:2:5, :, 1:2:5)) == cat([68,70,72],[406,408,410],[744,746,748]; dims=3) # tests @view (and replace_ref_end!) X = reshape(1:24,2,3,4) Y = 4:-1:1 @test isa(@view(X[1:3]), SubArray) @test X[1:end] == @.(@view X[1:end]) # test compatibility of @. and @view @test X[1:end-3] == @view X[1:end-3] @test X[1:end,2,2] == @view X[1:end,2,2] @test X[1,1:end-2,1] == @view X[1,1:end-2,1] @test X[1,2,1:end-2] == @view X[1,2,1:end-2] @test X[1,2,Y[2:end]] == @view X[1,2,Y[2:end]] @test X[1:end,2,Y[2:end]] == @view X[1:end,2,Y[2:end]] u = (1,2:3) @test X[u...,2:end] == @view X[u...,2:end] @test X[(1,)...,(2,)...,2:end] == @view X[(1,)...,(2,)...,2:end] # test macro hygiene let size=(x,y)-> error("should not happen"), Base=nothing @test X[1:end,2,2] == @view X[1:end,2,2] end # test that side effects occur only once let foo = [X] @test X[2:end-1] == @view (push!(foo,X)[1])[2:end-1] @test foo == [X, X] end # test @views macro @views let f!(x) = x[1:end-1] .+= x[2:end].^2 x = [1,2,3,4] f!(x) @test x == [5,11,19,4] @test x[1:3] isa SubArray @test x[2] === 11 @test Dict((1:3) => 4)[1:3] === 4 x[1:2] .= 0 @test x == [0,0,19,4] x[1:2] .= 5:6 @test x == [5,6,19,4] f!(x[3:end]) @test x == [5,6,35,4] x[Y[2:3]] .= 7:8 @test x == [5,8,7,4] x[(3,)..., ()...] += 3 @test x == [5,8,10,4] i = Int[] # test that lhs expressions in update operations are evaluated only once: x[push!(i,4)[1]] += 5 @test x == [5,8,10,9] && i == [4] x[push!(i,3)[end]] += 2 @test x == [5,8,12,9] && i == [4,3] @. x[3:end] = 0 # make sure @. works with end expressions in @views @test x == [5,8,0,0] end @views @test isa(X[1:3], SubArray) @test X[1:end] == @views X[1:end] @test X[1:end-3] == @views X[1:end-3] @test X[1:end,2,2] == @views X[1:end,2,2] @test X[1,2,1:end-2] == @views X[1,2,1:end-2] @test X[1,2,Y[2:end]] == @views X[1,2,Y[2:end]] @test X[1:end,2,Y[2:end]] == @views X[1:end,2,Y[2:end]] @test X[u...,2:end] == @views X[u...,2:end] @test X[(1,)...,(2,)...,2:end] == @views X[(1,)...,(2,)...,2:end] # test macro hygiene let size=(x,y)-> error("should not happen"), Base=nothing @test X[1:end,2,2] == @views X[1:end,2,2] end # issue #18034 # ensure that it is possible to create an isbits, IndexLinear view of an immutable Array let struct ImmutableTestArray{T, N} <: Base.DenseArray{T, N} end Base.size(::Union{ImmutableTestArray, Type{ImmutableTestArray}}) = (0, 0) Base.IndexStyle(::Union{ImmutableTestArray, Type{ImmutableTestArray}}) = Base.IndexLinear() a = ImmutableTestArray{Float64, 2}() @test Base.IndexStyle(view(a, :, :)) == Base.IndexLinear() @test isbits(view(a, :, :)) end # ref issue #17351 @test @inferred(reverse(view([1 2; 3 4], :, 1), dims=1)) == [3, 1] let s = view(reshape(1:6, 2, 3), 1:2, 1:2) @test @inferred(s[2,2,1]) === 4 end # issue #18581: slices with OneTo axes can be linear let A18581 = rand(5, 5) B18581 = view(A18581, :, axes(A18581,2)) @test IndexStyle(B18581) === IndexLinear() end @test sizeof(view(zeros(UInt8, 10), 1:4)) == 4 @test sizeof(view(zeros(UInt8, 10), 1:3)) == 3 @test sizeof(view(zeros(Float64, 10, 10), 1:3, 2:6)) == 120 # PR #25321 # checks that issue in type inference is resolved A = rand(5,5,5,5) V = view(A, 1:1 ,:, 1:3, :) @test @inferred(strides(V)) == (1, 5, 25, 125) # Issue #26263 — ensure that unaliascopy properly trims the array A = rand(5,5,5,5) V = view(A, 2:5, :, 2:5, 1:2:5) @test @inferred(Base.unaliascopy(V)) == V == A[2:5, :, 2:5, 1:2:5] @test @inferred(sum(Base.unaliascopy(V))) ≈ sum(V) ≈ sum(A[2:5, :, 2:5, 1:2:5]) # issue #27632 function _test_27632(A) for J in CartesianIndices(size(A)[2:end]) A[1, J] end nothing end # check that this doesn't crash _test_27632(view(ones(Int64, (1, 1, 1)), 1, 1, 1)) # issue #29608 - views of single values can be considered contiguous @test Base.iscontiguous(view(ones(1), 1))