# This file is a part of Julia. License is MIT: https://julialang.org/license ## Functions to compute the reduced shape # for reductions that expand 0 dims to 1 reduced_index(i::OneTo) = OneTo(1) reduced_index(i::Slice) = first(i):first(i) reduced_index(i::AbstractUnitRange) = throw(ArgumentError( """ No method is implemented for reducing index range of type $typeof(i). Please implement reduced_index for this index type or report this as an issue. """ )) reduced_indices(a::AbstractArray, region) = reduced_indices(axes(a), region) # for reductions that keep 0 dims as 0 reduced_indices0(a::AbstractArray, region) = reduced_indices0(axes(a), region) function reduced_indices(inds::Indices{N}, d::Int) where N d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d")) if d == 1 return (reduced_index(inds[1]), tail(inds)...) elseif 1 < d <= N return tuple(inds[1:d-1]..., oftype(inds[d], reduced_index(inds[d])), inds[d+1:N]...)::typeof(inds) else return inds end end function reduced_indices0(inds::Indices{N}, d::Int) where N d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d")) if d <= N ind = inds[d] rd = isempty(ind) ? ind : reduced_index(inds[d]) if d == 1 return (rd, tail(inds)...) else return tuple(inds[1:d-1]..., oftype(inds[d], rd), inds[d+1:N]...)::typeof(inds) end else return inds end end function reduced_indices(inds::Indices{N}, region) where N rinds = [inds...] for i in region isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers")) d = Int(i) if d < 1 throw(ArgumentError("region dimension(s) must be ≥ 1, got $d")) elseif d <= N rinds[d] = reduced_index(rinds[d]) end end tuple(rinds...)::typeof(inds) end function reduced_indices0(inds::Indices{N}, region) where N rinds = [inds...] for i in region isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers")) d = Int(i) if d < 1 throw(ArgumentError("region dimension(s) must be ≥ 1, got $d")) elseif d <= N rind = rinds[d] rinds[d] = isempty(rind) ? rind : reduced_index(rind) end end tuple(rinds...)::typeof(inds) end ###### Generic reduction functions ##### ## initialization # initarray! is only called by sum!, prod!, etc. for (Op, initfun) in ((:(typeof(add_sum)), :zero), (:(typeof(mul_prod)), :one)) @eval initarray!(a::AbstractArray{T}, ::$(Op), init::Bool, src::AbstractArray) where {T} = (init && fill!(a, $(initfun)(T)); a) end for Op in (:(typeof(max)), :(typeof(min))) @eval initarray!(a::AbstractArray{T}, ::$(Op), init::Bool, src::AbstractArray) where {T} = (init && copyfirst!(a, src); a) end for (Op, initval) in ((:(typeof(&)), true), (:(typeof(|)), false)) @eval initarray!(a::AbstractArray, ::$(Op), init::Bool, src::AbstractArray) = (init && fill!(a, $initval); a) end # reducedim_initarray is called by reducedim_initarray(A::AbstractArray, region, init, ::Type{R}) where {R} = fill!(similar(A,R,reduced_indices(A,region)), init) reducedim_initarray(A::AbstractArray, region, init::T) where {T} = reducedim_initarray(A, region, init, T) # TODO: better way to handle reducedim initialization # # The current scheme is basically following Steven G. Johnson's original implementation # promote_union(T::Union) = promote_type(promote_union(T.a), promote_union(T.b)) promote_union(T) = T function reducedim_init(f, op::Union{typeof(+),typeof(add_sum)}, A::AbstractArray, region) _reducedim_init(f, op, zero, sum, A, region) end function reducedim_init(f, op::Union{typeof(*),typeof(mul_prod)}, A::AbstractArray, region) _reducedim_init(f, op, one, prod, A, region) end function _reducedim_init(f, op, fv, fop, A, region) T = promote_union(eltype(A)) if T !== Any && applicable(zero, T) x = f(zero(T)) z = op(fv(x), fv(x)) Tr = z isa T ? T : typeof(z) else z = fv(fop(f, A)) Tr = typeof(z) end return reducedim_initarray(A, region, z, Tr) end # initialization when computing minima and maxima requires a little care for (f1, f2, initval) in ((:min, :max, :Inf), (:max, :min, :(-Inf))) @eval function reducedim_init(f, op::typeof($f1), A::AbstractArray, region) # First compute the reduce indices. This will throw an ArgumentError # if any region is invalid ri = reduced_indices(A, region) # Next, throw if reduction is over a region with length zero any(i -> isempty(axes(A, i)), region) && _empty_reduce_error() # Make a view of the first slice of the region A1 = view(A, ri...) if isempty(A1) # If the slice is empty just return non-view version as the initial array return copy(A1) else # otherwise use the min/max of the first slice as initial value v0 = mapreduce(f, $f2, A1) # but NaNs need to be avoided as intial values v0 = v0 != v0 ? typeof(v0)($initval) : v0 return reducedim_initarray(A, region, v0) end end end reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(max), A::AbstractArray{T}, region) where {T} = reducedim_initarray(A, region, zero(f(zero(T)))) reducedim_init(f, op::typeof(&), A::AbstractArray, region) = reducedim_initarray(A, region, true) reducedim_init(f, op::typeof(|), A::AbstractArray, region) = reducedim_initarray(A, region, false) # specialize to make initialization more efficient for common cases let BitIntFloat = Union{BitInteger, Math.IEEEFloat} T = Union{ [AbstractArray{t} for t in uniontypes(BitIntFloat)]..., [AbstractArray{Complex{t}} for t in uniontypes(BitIntFloat)]...} global function reducedim_init(f, op::Union{typeof(+),typeof(add_sum)}, A::T, region) z = zero(f(zero(eltype(A)))) reducedim_initarray(A, region, op(z, z)) end global function reducedim_init(f, op::Union{typeof(*),typeof(mul_prod)}, A::T, region) u = one(f(one(eltype(A)))) reducedim_initarray(A, region, op(u, u)) end end ## generic (map)reduction has_fast_linear_indexing(a::AbstractArray) = false has_fast_linear_indexing(a::Array) = true function check_reducedims(R, A) # Check whether R has compatible dimensions w.r.t. A for reduction # # It returns an integer value (useful for choosing implementation) # - If it reduces only along leading dimensions, e.g. sum(A, dims=1) or sum(A, dims=(1,2)), # it returns the length of the leading slice. For the two examples above, # it will be size(A, 1) or size(A, 1) * size(A, 2). # - Otherwise, e.g. sum(A, dims=2) or sum(A, dims=(1,3)), it returns 0. # ndims(R) <= ndims(A) || throw(DimensionMismatch("cannot reduce $(ndims(A))-dimensional array to $(ndims(R)) dimensions")) lsiz = 1 had_nonreduc = false for i = 1:ndims(A) Ri, Ai = axes(R, i), axes(A, i) sRi, sAi = length(Ri), length(Ai) if sRi == 1 if sAi > 1 if had_nonreduc lsiz = 0 # to reduce along i, but some previous dimensions were non-reducing else lsiz *= sAi # if lsiz was set to zero, it will stay to be zero end end else Ri == Ai || throw(DimensionMismatch("reduction on array with indices $(axes(A)) with output with indices $(axes(R))")) had_nonreduc = true end end return lsiz end """ Extract first entry of slices of array A into existing array R. """ copyfirst!(R::AbstractArray, A::AbstractArray) = mapfirst!(identity, R, A) function mapfirst!(f, R::AbstractArray, A::AbstractArray) lsiz = check_reducedims(R, A) iA = axes(A) iR = axes(R) t = [] for i in 1:length(iR) iAi = iA[i] push!(t, iAi == iR[i] ? iAi : first(iAi)) end map!(f, R, view(A, t...)) end function _mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) lsiz = check_reducedims(R,A) isempty(A) && return R if has_fast_linear_indexing(A) && lsiz > 16 # use mapreduce_impl, which is probably better tuned to achieve higher performance nslices = div(length(A), lsiz) ibase = first(LinearIndices(A))-1 for i = 1:nslices @inbounds R[i] = op(R[i], mapreduce_impl(f, op, A, ibase+1, ibase+lsiz)) ibase += lsiz end return R end indsAt, indsRt = safe_tail(axes(A)), safe_tail(axes(R)) # handle d=1 manually keep, Idefault = Broadcast.shapeindexer(indsRt) if reducedim1(R, A) # keep the accumulator as a local variable when reducing along the first dimension i1 = first(axes1(R)) @inbounds for IA in CartesianIndices(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) r = R[i1,IR] @simd for i in axes(A, 1) r = op(r, f(A[i, IA])) end R[i1,IR] = r end else @inbounds for IA in CartesianIndices(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) @simd for i in axes(A, 1) R[i,IR] = op(R[i,IR], f(A[i,IA])) end end end return R end mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) = (_mapreducedim!(f, op, R, A); R) reducedim!(op, R::AbstractArray{RT}, A::AbstractArray) where {RT} = mapreducedim!(identity, op, R, A) """ mapreduce(f, op, A::AbstractArray; dims=:, [init]) Evaluates to the same as `reduce(op, map(f, A); dims=dims, init=init)`, but is generally faster because the intermediate array is avoided. # Examples ```jldoctest julia> a = reshape(Vector(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> mapreduce(isodd, *, a, dims=1) 1×4 Array{Bool,2}: false false false false julia> mapreduce(isodd, |, true, a, dims=1) 1×4 Array{Bool,2}: true true true true julia> b = [1 missing 5; 2 4 missing] 2×3 Array{Union{Missing, Int64},2}: 1 missing 5 2 4 missing julia> mapreduce(isodd, *, skipmissing(b), dims=1) 1×3 Array{Bool,2}: false false true ``` """ mapreduce(f, op, A::AbstractArray; dims=:, kw...) = _mapreduce_dim(f, op, kw.data, A, dims) _mapreduce_dim(f, op, nt::NamedTuple{(:init,)}, A::AbstractArray, ::Colon) = mapfoldl(f, op, A; nt...) _mapreduce_dim(f, op, ::NamedTuple{()}, A::AbstractArray, ::Colon) = _mapreduce(f, op, IndexStyle(A), A) _mapreduce_dim(f, op, nt::NamedTuple{(:init,)}, A::AbstractArray, dims) = mapreducedim!(f, op, reducedim_initarray(A, dims, nt.init), A) _mapreduce_dim(f, op, ::NamedTuple{()}, A::AbstractArray, dims) = mapreducedim!(f, op, reducedim_init(f, op, A, dims), A) """ reduce(f, A; dims=:, [init]) Reduce 2-argument function `f` along dimensions of `A`. `dims` is a vector specifying the dimensions to reduce, and the keyword argument `init` is the initial value to use in the reductions. For `+`, `*`, `max` and `min` the `init` argument is optional. The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-to-right, you should write your own loop or consider using [`foldl`](@ref) or [`foldr`](@ref). See documentation for [`reduce`](@ref). # Examples ```jldoctest julia> a = reshape(Vector(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> reduce(max, a, dims=2) 4×1 Array{Int64,2}: 13 14 15 16 julia> reduce(max, a, dims=1) 1×4 Array{Int64,2}: 4 8 12 16 julia> b = [1 missing 5; 2 4 missing] 2×3 Array{Union{Missing, Int64},2}: 1 missing 5 2 4 missing julia> reduce(+, skipmissing(b), dims=1) 1×3 Array{Int64,2}: 3 4 5 ``` """ reduce(op, A::AbstractArray; kw...) = mapreduce(identity, op, A; kw...) ##### Specific reduction functions ##### """ sum(A::AbstractArray; dims) Sum elements of an array over the given dimensions. !!! note If `A` contains `NaN` or [`missing`](@ref) values, they are propagated to the corresponding result (`missing` takes precedence if a slice contains both). Use [`skipmissing(A)`](@ref) to omit `missing` entries and compute the sum of non-missing values. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> sum(A, dims=1) 1×2 Array{Int64,2}: 4 6 julia> sum(A, dims=2) 2×1 Array{Int64,2}: 3 7 julia> B = [1 missing; 3 4] 2×2 Array{Union{Missing, Int64},2}: 1 missing 3 4 julia> sum(skipmissing(B), dims=1) 1×2 Array{Int64,2}: 4 4 julia> sum(skipmissing(B), dims=2) 2×1 Array{Int64,2}: 1 7 ``` """ sum(A::AbstractArray; dims) """ sum!(r, A) Sum elements of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> sum!([1; 1], A) 2-element Array{Int64,1}: 3 7 julia> sum!([1 1], A) 1×2 Array{Int64,2}: 4 6 ``` """ sum!(r, A) """ prod(A::AbstractArray; dims) Multiply elements of an array over the given dimensions. !!! note If `A` contains `NaN` or [`missing`](@ref) values, they are propagated to the corresponding result (`missing` takes precedence if a slice contains both). Use [`skipmissing(A)`](@ref) to omit `missing` entries and compute the product of non-missing values. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> prod(A, dims=1) 1×2 Array{Int64,2}: 3 8 julia> prod(A, dims=2) 2×1 Array{Int64,2}: 2 12 julia> B = [1 missing; 3 4] 2×2 Array{Union{Missing, Int64},2}: 1 missing 3 4 julia> prod(skipmissing(B), dims=1) 1×2 Array{Int64,2}: 3 4 julia> prod(skipmissing(B), dims=2) 2×1 Array{Int64,2}: 1 12 ``` """ prod(A::AbstractArray; dims) """ prod!(r, A) Multiply elements of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> prod!([1; 1], A) 2-element Array{Int64,1}: 2 12 julia> prod!([1 1], A) 1×2 Array{Int64,2}: 3 8 ``` """ prod!(r, A) """ maximum(A::AbstractArray; dims) Compute the maximum value of an array over the given dimensions. See also the [`max(a,b)`](@ref) function to take the maximum of two or more arguments, which can be applied elementwise to arrays via `max.(a,b)`. !!! note If `A` contains `NaN` or [`missing`](@ref) values, they are propagated to the corresponding result (`missing` takes precedence if a slice contains both). Use [`skipmissing(A)`](@ref) to omit `missing` entries and compute the maximum of non-missing values. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> maximum(A, dims=1) 1×2 Array{Int64,2}: 3 4 julia> maximum(A, dims=2) 2×1 Array{Int64,2}: 2 4 julia> B = [1 missing; 3 4] 2×2 Array{Union{Missing, Int64},2}: 1 missing 3 4 julia> maximum(skipmissing(B), dims=1) 1×2 Array{Int64,2}: 3 4 julia> maximum(skipmissing(B), dims=2) 2×1 Array{Int64,2}: 1 4 ``` """ maximum(A::AbstractArray; dims) """ maximum!(r, A) Compute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> maximum!([1; 1], A) 2-element Array{Int64,1}: 2 4 julia> maximum!([1 1], A) 1×2 Array{Int64,2}: 3 4 ``` """ maximum!(r, A) """ minimum(A::AbstractArray; dims) Compute the minimum value of an array over the given dimensions. See also the [`min(a,b)`](@ref) function to take the minimum of two or more arguments, which can be applied elementwise to arrays via `min.(a,b)`. !!! note If `A` contains `NaN` or [`missing`](@ref) values, they are propagated to the corresponding result (`missing` takes precedence if a slice contains both). Use [`skipmissing(A)`](@ref) to omit `missing` entries and compute the minimum of non-missing values. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> minimum(A, dims=1) 1×2 Array{Int64,2}: 1 2 julia> minimum(A, dims=2) 2×1 Array{Int64,2}: 1 3 julia> B = [1 missing; 3 4] 2×2 Array{Union{Missing, Int64},2}: 1 missing 3 4 julia> minimum(skipmissing(B), dims=1) 1×2 Array{Int64,2}: 1 4 julia> minimum(skipmissing(B), dims=2) 2×1 Array{Int64,2}: 1 3 ``` """ minimum(A::AbstractArray; dims) """ minimum!(r, A) Compute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`. # Examples ```jldoctest julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> minimum!([1; 1], A) 2-element Array{Int64,1}: 1 3 julia> minimum!([1 1], A) 1×2 Array{Int64,2}: 1 2 ``` """ minimum!(r, A) """ all(A; dims) Test whether all values along the given dimensions of an array are `true`. # Examples ```jldoctest julia> A = [true false; true true] 2×2 Array{Bool,2}: true false true true julia> all(A, dims=1) 1×2 Array{Bool,2}: true false julia> all(A, dims=2) 2×1 Array{Bool,2}: false true ``` """ all(A::AbstractArray; dims) """ all!(r, A) Test whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`. # Examples ```jldoctest julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> all!([1; 1], A) 2-element Array{Int64,1}: 0 0 julia> all!([1 1], A) 1×2 Array{Int64,2}: 1 0 ``` """ all!(r, A) """ any(A; dims) Test whether any values along the given dimensions of an array are `true`. # Examples ```jldoctest julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> any(A, dims=1) 1×2 Array{Bool,2}: true false julia> any(A, dims=2) 2×1 Array{Bool,2}: true true ``` """ any(::AbstractArray; dims) """ any!(r, A) Test whether any values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`. # Examples ```jldoctest julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> any!([1; 1], A) 2-element Array{Int64,1}: 1 1 julia> any!([1 1], A) 1×2 Array{Int64,2}: 1 0 ``` """ any!(r, A) for (fname, _fname, op) in [(:sum, :_sum, :add_sum), (:prod, :_prod, :mul_prod), (:maximum, :_maximum, :max), (:minimum, :_minimum, :min)] @eval begin # User-facing methods with keyword arguments @inline ($fname)(a::AbstractArray; dims=:) = ($_fname)(a, dims) @inline ($fname)(a::SkipMissing{<:AbstractArray}; dims=:) = ($_fname)(a, dims) @inline ($fname)(f::Callable, a::AbstractArray; dims=:) = ($_fname)(f, a, dims) # Underlying implementations using dispatch ($_fname)(a, ::Colon) = ($_fname)(identity, a, :) ($_fname)(f, a, ::Colon) = mapreduce(f, $op, a) end end any(a::AbstractArray; dims=:) = _any(a, dims) any(f::Function, a::AbstractArray; dims=:) = _any(f, a, dims) _any(a, ::Colon) = _any(identity, a, :) all(a::AbstractArray; dims=:) = _all(a, dims) all(f::Function, a::AbstractArray; dims=:) = _all(f, a, dims) _all(a, ::Colon) = _all(identity, a, :) for (fname, op) in [(:sum, :add_sum), (:prod, :mul_prod), (:maximum, :max), (:minimum, :min), (:all, :&), (:any, :|)] fname! = Symbol(fname, '!') _fname = Symbol('_', fname) @eval begin $(fname!)(f::Function, r::AbstractArray, A::AbstractArray; init::Bool=true) = mapreducedim!(f, $(op), initarray!(r, $(op), init, A), A) $(fname!)(r::AbstractArray, A::AbstractArray; init::Bool=true) = $(fname!)(identity, r, A; init=init) $(_fname)(A, dims) = $(_fname)(identity, A, dims) $(_fname)(f, A, dims) = mapreduce(f, $(op), A, dims=dims) end end ##### findmin & findmax ##### # The initial values of Rval are not used if the corresponding indices in Rind are 0. # function findminmax!(f, Rval, Rind, A::AbstractArray{T,N}) where {T,N} (isempty(Rval) || isempty(A)) && return Rval, Rind lsiz = check_reducedims(Rval, A) for i = 1:N axes(Rval, i) == axes(Rind, i) || throw(DimensionMismatch("Find-reduction: outputs must have the same indices")) end # If we're reducing along dimension 1, for efficiency we can make use of a temporary. # Otherwise, keep the result in Rval/Rind so that we traverse A in storage order. indsAt, indsRt = safe_tail(axes(A)), safe_tail(axes(Rval)) keep, Idefault = Broadcast.shapeindexer(indsRt) ks = keys(A) y = iterate(ks) zi = zero(eltype(ks)) if reducedim1(Rval, A) i1 = first(axes1(Rval)) @inbounds for IA in CartesianIndices(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) tmpRv = Rval[i1,IR] tmpRi = Rind[i1,IR] for i in axes(A,1) k, kss = y::Tuple tmpAv = A[i,IA] if tmpRi == zi || (tmpRv == tmpRv && (tmpAv != tmpAv || f(tmpAv, tmpRv))) tmpRv = tmpAv tmpRi = k end y = iterate(ks, kss) end Rval[i1,IR] = tmpRv Rind[i1,IR] = tmpRi end else @inbounds for IA in CartesianIndices(indsAt) IR = Broadcast.newindex(IA, keep, Idefault) for i in axes(A, 1) k, kss = y::Tuple tmpAv = A[i,IA] tmpRv = Rval[i,IR] tmpRi = Rind[i,IR] if tmpRi == zi || (tmpRv == tmpRv && (tmpAv != tmpAv || f(tmpAv, tmpRv))) Rval[i,IR] = tmpAv Rind[i,IR] = k end y = iterate(ks, kss) end end end Rval, Rind end """ findmin!(rval, rind, A) -> (minval, index) Find the minimum of `A` and the corresponding linear index along singleton dimensions of `rval` and `rind`, and store the results in `rval` and `rind`. `NaN` is treated as less than all other values. """ function findmin!(rval::AbstractArray, rind::AbstractArray, A::AbstractArray; init::Bool=true) findminmax!(isless, init && !isempty(A) ? fill!(rval, first(A)) : rval, fill!(rind,zero(eltype(keys(A)))), A) end """ findmin(A; dims) -> (minval, index) For an array input, returns the value and index of the minimum over the given dimensions. `NaN` is treated as less than all other values. # Examples ```jldoctest julia> A = [1.0 2; 3 4] 2×2 Array{Float64,2}: 1.0 2.0 3.0 4.0 julia> findmin(A, dims=1) ([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)]) julia> findmin(A, dims=2) ([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)]) ``` """ findmin(A::AbstractArray; dims=:) = _findmin(A, dims) function _findmin(A, region) ri = reduced_indices0(A, region) if isempty(A) if prod(map(length, reduced_indices(A, region))) != 0 throw(ArgumentError("collection slices must be non-empty")) end (similar(A, ri), zeros(eltype(keys(A)), ri)) else findminmax!(isless, fill!(similar(A, ri), first(A)), zeros(eltype(keys(A)), ri), A) end end isgreater(a, b) = isless(b,a) """ findmax!(rval, rind, A) -> (maxval, index) Find the maximum of `A` and the corresponding linear index along singleton dimensions of `rval` and `rind`, and store the results in `rval` and `rind`. `NaN` is treated as greater than all other values. """ function findmax!(rval::AbstractArray, rind::AbstractArray, A::AbstractArray; init::Bool=true) findminmax!(isgreater, init && !isempty(A) ? fill!(rval, first(A)) : rval, fill!(rind,zero(eltype(keys(A)))), A) end """ findmax(A; dims) -> (maxval, index) For an array input, returns the value and index of the maximum over the given dimensions. `NaN` is treated as greater than all other values. # Examples ```jldoctest julia> A = [1.0 2; 3 4] 2×2 Array{Float64,2}: 1.0 2.0 3.0 4.0 julia> findmax(A, dims=1) ([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)]) julia> findmax(A, dims=2) ([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)]) ``` """ findmax(A::AbstractArray; dims=:) = _findmax(A, dims) function _findmax(A, region) ri = reduced_indices0(A, region) if isempty(A) if prod(map(length, reduced_indices(A, region))) != 0 throw(ArgumentError("collection slices must be non-empty")) end similar(A, ri), zeros(eltype(keys(A)), ri) else findminmax!(isgreater, fill!(similar(A, ri), first(A)), zeros(eltype(keys(A)), ri), A) end end reducedim1(R, A) = length(axes1(R)) == 1 """ argmin(A; dims) -> indices For an array input, return the indices of the minimum elements over the given dimensions. `NaN` is treated as less than all other values. # Examples ```jldoctest julia> A = [1.0 2; 3 4] 2×2 Array{Float64,2}: 1.0 2.0 3.0 4.0 julia> argmin(A, dims=1) 1×2 Array{CartesianIndex{2},2}: CartesianIndex(1, 1) CartesianIndex(1, 2) julia> argmin(A, dims=2) 2×1 Array{CartesianIndex{2},2}: CartesianIndex(1, 1) CartesianIndex(2, 1) ``` """ argmin(A::AbstractArray; dims=:) = findmin(A; dims=dims)[2] """ argmax(A; dims) -> indices For an array input, return the indices of the maximum elements over the given dimensions. `NaN` is treated as greater than all other values. # Examples ```jldoctest julia> A = [1.0 2; 3 4] 2×2 Array{Float64,2}: 1.0 2.0 3.0 4.0 julia> argmax(A, dims=1) 1×2 Array{CartesianIndex{2},2}: CartesianIndex(2, 1) CartesianIndex(2, 2) julia> argmax(A, dims=2) 2×1 Array{CartesianIndex{2},2}: CartesianIndex(1, 2) CartesianIndex(2, 2) ``` """ argmax(A::AbstractArray; dims=:) = findmax(A; dims=dims)[2]