https://github.com/cran/spatstat
Raw File
Tip revision: 32c7daeb36b6e48fd0356bdcec9580ae124fee5e authored by Adrian Baddeley on 29 December 2015, 22:08:27 UTC
version 1.44-1
Tip revision: 32c7dae
vargamma.estK.Rd
\name{vargamma.estK}
\alias{vargamma.estK}
\title{Fit the Neyman-Scott Cluster Point Process with Variance Gamma kernel}
\description{
  Fits the Neyman-Scott cluster point process, with Variance Gamma
  kernel, to a point pattern dataset by the Method of Minimum Contrast.
}
\usage{
vargamma.estK(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
            q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)
}
\arguments{
  \item{X}{
    Data to which the model will be fitted.
    Either a point pattern or a summary statistic.
    See Details.
  }
  \item{startpar}{
    Vector of starting values for the parameters of the model.
  }
  \item{nu}{
    Numerical value controlling the shape of the tail of the clusters.
    A number greater than \code{-1/2}.
  }
  \item{lambda}{
    Optional. An estimate of the intensity of the point process.
  }
  \item{q,p}{
    Optional. Exponents for the contrast criterion.
  }
  \item{rmin, rmax}{
    Optional. The interval of \eqn{r} values for the contrast criterion.
  }
  \item{\dots}{
    Optional arguments passed to \code{\link[stats]{optim}}
    to control the optimisation algorithm. See Details.
  }
}
\details{
  This algorithm fits the Neyman-Scott Cluster point process model
  with Variance Gamma kernel (Jalilian et al, 2013)
  to a point pattern dataset
  by the Method of Minimum Contrast, using the \eqn{K} function.

  The argument \code{X} can be either
  \describe{
    \item{a point pattern:}{An object of class \code{"ppp"}
      representing a point pattern dataset. 
      The \eqn{K} function of the point pattern will be computed
      using \code{\link{Kest}}, and the method of minimum contrast
      will be applied to this.
    }
    \item{a summary statistic:}{An object of class \code{"fv"} containing
      the values of a summary statistic, computed for a point pattern
      dataset. The summary statistic should be the \eqn{K} function,
      and this object should have been obtained by a call to
      \code{\link{Kest}} or one of its relatives.
    }
  }

  The algorithm fits the Neyman-Scott Cluster point process
  with Variance Gamma kernel to \code{X},
  by finding the parameters of the model
  which give the closest match between the
  theoretical \eqn{K} function of the model
  and the observed \eqn{K} function.
  For a more detailed explanation of the Method of Minimum Contrast,
  see \code{\link{mincontrast}}.
  
  The Neyman-Scott cluster point process with Variance Gamma
  kernel is described in Jalilian et al (2013).
  It is a cluster process formed by taking a 
  pattern of parent points, generated according to a Poisson process
  with intensity \eqn{\kappa}{kappa}, and around each parent point,
  generating a random number of offspring points, such that the
  number of offspring of each parent is a Poisson random variable with mean
  \eqn{\mu}{mu}, and the locations of the offspring points of one parent
  have a common distribution described in Jalilian et al (2013).

  The shape of the kernel is determined by the dimensionless
  index \code{nu}. This is the parameter
  \eqn{\nu^\prime = \alpha/2-1}{nu' = alpha/2 - 1} appearing in
  equation (12) on page 126 of Jalilian et al (2013).
  In previous versions of spatstat instead of specifying \code{nu}
  (called \code{nu.ker} at that time) the user could specify
  \code{nu.pcf} which is the parameter \eqn{\nu=\alpha-1}{nu = alpha-1}
  appearing in equation (13), page 127 of Jalilian et al (2013).
  These are related by \code{nu.pcf = 2 * nu.ker + 1}
  and \code{nu.ker = (nu.pcf - 1)/2}. This syntax is still supported but
  not recommended for consistency across the package. In that case
  exactly one of \code{nu.ker} or \code{nu.pcf} must be specified.
  
  If the argument \code{lambda} is provided, then this is used
  as the value of the point process intensity \eqn{\lambda}{lambda}.
  Otherwise, if \code{X} is a
  point pattern, then  \eqn{\lambda}{lambda}
  will be estimated from \code{X}. 
  If \code{X} is a summary statistic and \code{lambda} is missing,
  then the intensity \eqn{\lambda}{lambda} cannot be estimated, and
  the parameter \eqn{\mu}{mu} will be returned as \code{NA}.

  The remaining arguments \code{rmin,rmax,q,p} control the
  method of minimum contrast; see \code{\link{mincontrast}}.

  The corresponding model can be simulated using \code{\link{rVarGamma}}.

  The parameter \code{eta} appearing in \code{startpar} is equivalent to the
  scale parameter \code{omega} used in  \code{\link{rVarGamma}}.
  
  Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be
  fitted using the function \code{\link{kppm}} and the fitted models
  can be simulated using \code{\link{simulate.kppm}}.

  The optimisation algorithm can be controlled through the
  additional arguments \code{"..."} which are passed to the
  optimisation function \code{\link[stats]{optim}}. For example,
  to constrain the parameter values to a certain range,
  use the argument \code{method="L-BFGS-B"} to select an optimisation
  algorithm that respects box constraints, and use the arguments
  \code{lower} and \code{upper} to specify (vectors of) minimum and
  maximum values for each parameter.
}
\value{
  An object of class \code{"minconfit"}. There are methods for printing
  and plotting this object. It contains the following main components:
  \item{par }{Vector of fitted parameter values.}
  \item{fit }{Function value table (object of class \code{"fv"})
    containing the observed values of the summary statistic
    (\code{observed}) and the theoretical values of the summary
    statistic computed from the fitted model parameters.
  }
}
\references{
  Jalilian, A., Guan, Y. and Waagepetersen, R. (2013)
  Decomposition of variance for spatial Cox processes.
  \emph{Scandinavian Journal of Statistics} \bold{40}, 119-137.

  Waagepetersen, R. (2007)
  An estimating function approach to inference for
  inhomogeneous Neyman-Scott processes.
  \emph{Biometrics} \bold{63}, 252--258.
}
\author{Abdollah Jalilian and Rasmus Waagepetersen.
  Adapted for \pkg{spatstat} by Adrian Baddeley \email{Adrian.Baddeley@curtin.edu.au}
  
  
}
\seealso{
  \code{\link{kppm}},
  \code{\link{vargamma.estpcf}},
  \code{\link{lgcp.estK}},
  \code{\link{thomas.estK}},
  \code{\link{cauchy.estK}},
  \code{\link{mincontrast}},
  \code{\link{Kest}},
  \code{\link{Kmodel}}.

  \code{\link{rVarGamma}} to simulate the model.
}
\examples{
   \testonly{
     u <- vargamma.estK(redwood, startpar=c(kappa=15, eta=0.075))
    }
    if(interactive()) {
      u <- vargamma.estK(redwood)
      u
      plot(u)
    }
}
\keyword{spatial}
\keyword{models}
back to top