import requests
import pandas as pd
SCANR_API_BASE = "https://scanr-api.enseignementsup-recherche.gouv.fr/api/v2/"
def get_parents(structure_id):
url = SCANR_API_BASE+"structures/search"
params = {
"filters": {
"parents.structure.id": {
"type":"MultiValueSearchFilter","op":"all","values":[structure_id]
}
},
"sourceFields":["id"],
"pageSize":10000
}
r = requests.post(url, json=params)
res = r.json()['results']
return [i['value']['id'] for i in res]
def get_supervised(structure_id):
url = SCANR_API_BASE+"structures/search"
params = {
"filters": {
"institutions.structure.id": {
"type":"MultiValueSearchFilter","op":"all","values":[structure_id]
}
},
"sourceFields":["id"],
"pageSize":10000
}
r = requests.post(url, json=params)
res = r.json()['results']
return [i['value']['id'] for i in res]
def get_all_structures(structure_id, verbose = False):
all_structures = [structure_id] + get_parents(structure_id) + get_supervised(structure_id)
all_structures_dedup = list(set(all_structures))
if verbose:
print("Structures identifiées dans le périmètre : \n {}".format(", ".join(all_structures_dedup)))
return all_structures_dedup
def get_publications_one_year(structure, year_start, verbose = False):
structures = get_all_structures(structure, verbose)
url = SCANR_API_BASE+"publications/search"
params = {"pageSize":10000,
"query":"","sort":{"year":"DESC"},"sourceFields":["id","title","year"],"filters":{"year":{"type":"LongRangeFilter","max":year_start + 1,"min":year_start,"missing":False},"productionType":{"type":"MultiValueSearchFilter","op":"all","values":["publication"]},"affiliations.id":{"type":"MultiValueSearchFilter","op":"any","values":
structures
}},"aggregations":{"types":{"field":"type","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":50},"productionTypes":{"field":"productionType","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":100},"keywordsEn":{"field":"keywords.en","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":100},"keywordsFr":{"field":"keywords.fr","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":100},"journal":{"field":"source.title","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":10},"years":{"field":"year","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":100},"isOa":{"field":"isOa","filters":{},"min_doc_count":1,"order":{"direction":"DESC","type":"COUNT"},"size":10}}}
r = requests.post(url, json=params)
if r.json()['total'] > 10000:
print("Attention, plus de 10 000 publications. Seules 10 000 sont renvoyées par l'API.")
if verbose:
print("{} publications pour l'année {}".format(r.json()['total'], year_start), end=' ')
res = r.json()['results']
publi_with_doi = []
for p in res:
if 'doi' in p['value']['id']:
p['value']['doi'] = p['value']['id'].replace('doi','')
del p['value']['id']
p['value']['title'] = p['value']['title']['default']
if 'isOa' in p['value']:
del p['value']['isOa']
publi_with_doi.append(p['value'])
if verbose:
print("dont {} avec un DOI".format(len(publi_with_doi)))
return pd.DataFrame(publi_with_doi)
def get_publications_with_doi(structure, verbose = False):
dfs = []
for year in range(2013,2021):
dfs.append(get_publications_one_year(structure, year, verbose))
df = pd.concat(dfs)
df = df.sort_values(by='year').reset_index()
del df['index']
return df